[image: image1.wmf]

TD <>
Draft ETSI ES XXX XXX V0.0.1 (yyyy-mm)
ETSI Standard
Methods for Testing and Specification (MTS);

Testing and Test Control Notation version 3 Extension;

Package xx: xxx

Reference

<Workitem>

Keywords

<keyword>

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute yyyy.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM, TIPHONTM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Contents

4Intellectual Property Rights

4Foreword

51
Scope

52
References

52.1
Normative references

62.2
Informative references

63
Definitions, symbols and abbreviations

63.1
Definitions

73.2
Abbreviations

74
Package conformance and compatibility

84
Package concepts for the core language

84.1
The test system clock

84.1.1
Accessing the current test system time

94.2.2
The precision of the system time

94.2
Measureing timing information for dedicated incoming communication events

94.2.1
Obtain the reception time for messages with the receive statement

104.2.2
Obtain the reception time for messages with the trigger statement

104.2.3
Obtain the reception time for procedure calls with getcall statement

114.2.4
Obtain the reception time for procedure replies with the getreply statement

124.2.5
Obtain the reception time for exceptions with the catch statement

124.3
 The wait statement

135
Package semantics

136
TRI extensions for the package

136.1
triStartClock (TE → PA)

146.2
triReadClock (TE → PA)

146.3
triBeginWait (TE → PA)

156.4
triEndWait (PA → TE)

156.5
triEnqueueMsgRT (SA (TE)

166.6
triSendRT (TE → SA)

177
TCI extensions for the package

177.1
User defined subdivisions of clause(s) from here onwards

178
xxx extensions for the package

178.1
User defined subdivisions of clause(s) from here onwards

17A.1
First clause of the annex

17A.1.1
First subdivided clause of the annex

18A.1
First clause of the annex

18A.1.1
First subdivided clause of the annex

18B.1
First clause of the annex

18B.1.1
First subdivided clause of the annex

20History

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document relates to the multi-part standard covering the Testing and Test Control Notation version 3, as identified below:

ES 201873 Part 1:
"TTCN‑3 Core Language";
ES 201873 Part 2:
"TTCN‑3 Tabular presentation Format (TFT)";

ES 201873 Part 3:
"TTCN‑3 Graphical presentation Format (GFT)";

ES 201873 Part 4:
"TTCN‑3 Operational Semantics";

ES 201873 Part 5:
"TTCN‑3 Runtime Interface (TRI)";

ES 201873 Part 6:
"TTCN‑3 Control Interface (TCI)";

ES 201873 Part 7:
"Using ASN.1 with TTCN‑3";

ES 201873 Part 8:
"The IDL to TTCN-3 Mapping";

ES 201873 Part 9:
"Using XML schema with TTCN‑3";

ES 201873 Part 10:
"TTCN-3 Documentation Comment Specification".

1
Scope

The present document defines the xxx package of TTCN‑3. TTCN‑3 can be used for the specification of all types of reactive system tests over a variety of communication ports. Typical areas of application are protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module testing, testing of CORBA based platforms, APIs, etc. TTCN‑3 is not restricted to conformance testing and can be used for many other kinds of testing including interoperability, robustness, regression, system and integration testing. The specification of test suites for physical layer protocols is outside the scope of the present document.

TTCN‑3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as concepts in the TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or usages of TTCN-3.

This package defines …

While the design of TTCN‑3 package has taken into account the consistency of a combined usage of the core language with a number of packages, the concrete usages of and guidelines for this package in combination with other packages is outside the scope of the present document.

2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· Non-specific reference may be made only to a complete document or a part thereof and only in the following cases:
· if it is accepted that it will be possible to use all future changes of the referenced document for the purposes of the referring document;

· for informative references.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

For online referenced documents, information sufficient to identify and locate the source shall be provided. Preferably, the primary source of the referenced document should be cited, in order to ensure traceability. Furthermore, the reference should, as far as possible, remain valid for the expected life of the document. The reference shall include the method of access to the referenced document and the full network address, with the same punctuation and use of upper case and lower case letters.
NOTE:
While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.
2.1
Normative references

The following referenced documents are indispensable for the application of the present document. For dated references, only the edition cited applies. For non-specific references, the latest edition of the referenced document (including any amendments) applies.

[1]
ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language".
[2]
ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics".

[3]
ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".
[4]
ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".
[5]
ISO/IEC 9646-1: "Information technology - Open Systems Interconnection -Conformance testing methodology and framework; Part 1: General concepts"
[6]
…
2.2
Informative references
The following referenced documents are not essential to the use of the present document but they assist the user with regard to a particular subject area. For non-specific references, the latest version of the referenced document (including any amendments) applies.
[i.1]
ETSI ES 201 873-2: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)".
[i.2]
ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

 [i.3]
ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[i.4]
ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.5]
ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 9: Using XML schema with TTCN-3".

[i.6]
ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

[i.7]
ITU-T Recommendation T.50 (1992): "International Reference Alphabet (IRA) (Formerly International Alphabet No. 5 or IA5) - Information technology - 7-bit coded character set for information interchange".

[i.8]
ISO/IEC 8859-1: "Information technology - 8-bit single-byte coded graphic character sets - Part 1: Latin alphabet No. 1", 1998.
[i.9]
Object Management Group (OMG): "The Common Object Request Broker: Architecture and Specification - IDL Syntax and Semantics". Version 2.6, FORMAL/01-12-01, December 2001.
[i.10]
Draft ETSI ES xxx: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3 Extension; Testing and Test Control Notation version 3 Extension; Package xx".

3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in ETSI ES 201873-1 [1], ETSI ES 201873‑4 [2], ETSI ES 201873-5 [3], ETSI ES 201873-6 [4], ISO/IEC 9646-1 [5] and the following apply:

…
3.2
Abbreviations

For the purposes of the present document, the abbreviations given in ETSI ES 201873-1 [1], ETSI ES 201873‑4 [2], ETSI ES 201873-5 [3], ETSI ES 201873-6 [4], ISO/IEC 9646-1 [5] and the following] apply:

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

4
Package conformance and compatibility

The package presented in this document is identified by the package tag
(Needed for package version – reference previous package versions in the bibliography annex

"<Package>:<Year>" - to be used with modules complying with version xxx of the present document (see annex <bibliography>).)

"<Package>:<Year>" - to be used with modules complying with the present document.

For an implementation claiming to conform to this package version, all features specified in the present document shall be implemented consistently with the requirements given in the present document and in ES 201 873‑4 [1] and ES 201 873‑4 [2].

The package presented in this document is compatible to

Please choose the appropriate ones – and provide the version number.
ES 201873 Part 1 version xxx
ES 201873 Part 2 version xxx
ES 201873 Part 3 version xxx
ES 201873 Part 4 version xxx
ES 201873 Part 5 version xxx
ES 201873 Part 6 version xxx
ES 201873 Part 7 version xxx
ES 201873 Part 8 version xxx
ES 201873 Part 9 version xxx
ES 201873 Part 10 version xxx
If later versions of those parts are available and should be used instead, the compatibility the package presented in this document has to be checked individually.
The package presented in this document is also compatible to

Please choose the appropriate ones – and provide the version number.
ES XXXXXX Package xxx version xxx
ES XXXXXX Package xxx version xxx
and can be used together with those packages/this package.

If later versions of those packages are available and should be used instead, the compatibility to the package presented in this document has to be checked individually.
4
Package concepts for the core language

Real-time systems have to respect special requirements for timing. Often functional requirements are directly connected to the timing of the messages and procedure calls. Thus, checking the message values and the message order is not sufficient here. A test component must be able to check whether a message has been received in time and must be able to control the timing for the stimulation.

Thus, a test language has to provide means to measure time, to specify time points and time spans, to control the timing of the stimulation, and to calculate and compare time values. Moreover the test execution engine has to ensure that the specified actions (time measurement, timed stimulation) are executed correctly with respect to the required precision.

To fullfill the requirements for testing real time system we define the following TTCN-3 core languge extensions.

· A test system wide available test system clock, that allows the measurement of time during test case execution.

· Means to directly and precisely acces the timepoints of the relevant interaction events between the test system and the system under test.
Real-time measurements at ports require additional resources (e.g., functionality that monitor ports and collect timestamps that describe the reception time of messages, calls, replys or exections) that may slow down the test execution. In order to avoid unnecessary delays at ports, such resources may only be provided when needed. An additional realtime clause for ports shall indicate the need for real-time measurement at a port.

4.1
The test system clock

In RT TTCN-3 time progress is measured wih a test system clock. The clock is initialized (set to 0.0) at the beginning of each test case execution and is available during the complete test run in each component. The clock values are represented as float values. The system clock and the already available TTCN-3 timer mechanisms are synchronized with respect to time progress.
4.1.1
Accessing the current test system time

The current value of the test system clock by means of the symbol now. The now symbol is used as a TTCN-3 expression that yields the current test system clock value in seconds. The test system clock value is represented by means of a float number. The symbol now can be applied in each expression inside of testcase definitions and function definitions. It is not allowed for the TTCN-3 control part and in guard conditions of alt branches.

EXAMPLE 1:

// Use of now to retrieve the actual time

var float myTimePoint := now;

EXAMPLE 2:

// Use of no to retrieve the send time of a message

var float sendTimePoint;

// ...

p.send(m);

sendTimePoint:= now;

EXAMPLE 3:

// Measuring time progress

var float startTime;

startTime:= now;

p.send(m1);

// ...

p..receive(m2);

if(now-startTime >= 10.0){...};

Syntactical Structure:
OpCall ::= ConfigurationOps | VerdictOps | TimerOps | TestcaseInstance |
 FunctionInstance | TemplateOps | ActivateOp | NowOperation

NowOperation ::= NowKeyword

NowKeyword ::= "now"

4.2.2
The precision of the system time

The requirements on the overall precision of the test system clock can be specified by means of the stepsize annotation. The stepsize annotation is allowed for modules only and can be used to state the minimal necessary precission for time measurement provided by the test system clock. The precision is defined by means of a charstring value that represents a decimal number which states the smallest necessary time distance in seconds that is measureable by the test system clock. A concrete testsystem has to fullfill the requirements given by the stepsize annotation to be adequate for the execution of the respective test case definitions. When a test system is not adequate for the test case execution the user shall be informed, at least test run shall end with an error verdict.
EXAMPLE 1:

// specifies the requirement on a necessary precision of a millisecond

module myModule{

…

} with {stepsize “0.001”};
In case of module imports with different stepsize annotation the test system has to respect the stepsize annotation with the highest precision.

4.3
Communication port types for realtime measurements
This package extends the port type definition of message-based and procedure-based ports with a realtime clause. Ports facilitate communication between test components and between test components and the test system interface.
Only instances of ports with a realtime clause shall be used for realtime measurements. This means, the redirection operator -> timestamp shall only be used by receiving operations (i.e., the operations receive, trigger, getcall, getreply and catch) applied to ports with a realtime clause.
Syntactical Structure
Message-based port:

type port PortTypeIdentifier message [realtime] "{"

{ (in | out | inout) { MessageType [","] }+ ";" }
"}"

Procedure-based port:

type port PortTypeIdentifier procedure [realtime] "{"

{ (in | out | inout) { Signature [","] }+ ";" }
"}"

4.3
Measureing timing information for dedicated incoming communication events

Testing real time systems requires exact timing information that relates directly to the communication (reception and distribution of messages an procedure calls) between the testsystem and the system under test. The timing information that can be obtained by the now symbol or the TTCN-3 timer construct is related to the logiocal structure of the test programm, thus it allows the measurement on TTCN-3 statement level. Time measurement on TTCN-3 statement level may be affected by blocked queues, decoding and matching procedures. It is not exact with respect to the real timing of the reception and disposal of messages and procedure calls at the interface between the test system and the SUT.

RT TTCN-3 introduces a mechanism to store the arrival time of a messages, procedure calls at system adapter level. The time points of message reception are automatically registered by the system adapter, commicated to the test executable and stored with the message. The timing information can be retrieved directly at the communication statements by means of the redirection operator -> timestamp .

The existing redirections for getcall, getreply, receive, trigger, catch, and check operations are extended by an optional clause timestamp. A redirect specification of the form

 -> timestamp VariableRef

specifies the redirection of the time point, whis has been measured at message, procedure call, reply or exception arrival to a given float variable . The redirection is processed when the respective communication statement matches.
Restrictions
The redirection operator -> timestamp shall only be used by receiving operations (i.e., the operations receive, trigger, getcall, getreply and catch) applied to ports with a realtime clause.
4.3.1
Obtain the reception time for messages with the receive statement

The existing redirections for receive are extended by an optional clause “timestamp VariableRef”. A receive statement that holds a timestamp clause and that is executed successfully (i.e. it matches a message) allocates the given variable with the reception time of the matched message.

EXAMPLE 1:

p.receive(t)-> timestamp myTime;

// yields the reception time of a message

 if(myTime>MAX){setverdict(fail);}

EXAMPLE 2:

interleave{

[] FrontOut.receive(ON) -> timestamp f_actv{

if(f_actv>MAX){setverdict(fail);}

};

[] RearOut.receive(ON) -> timestamp r_actv{

if(r_actv>MAX){setverdict(fail);}

};

}
Syntactical Structure:

(Port | any port) “.” receive [“(“ TemplateInstance “)”] [from AddressRef]
[-> [value VariableRef] [sender VariableRef] [timestamp VariableRef]]

[Note: If several redirect specifications (such as value VariableRef, sender VariableRef) are used, they have to be separated by a comma (this is not expressed in the above syntax schemas).]

4.3.2
Obtain the reception time for messages with the trigger statement

The existing redirections for trigger are extended by an optional clause “timestamp VariableRef”. A trigger statement statement that holds a timestamp clause and that is executed successfully (i.e. it matches a message) allocates the given variable with the reception time of the matched message.

EXAMPLE 1:

p.trigger(t)-> timestamp myTime;

// yields the reception time of a message

if(myTime>MAX){setverdict(fail);}

EXAMPLE 2:

interleave{

[] FrontOut.trigger(ON) -> timestamp f_actv{

if(f_actv>MAX){setverdict(fail);}

};

[] RearOut.trigger(ON) -> timestamp r_actv{

if(r_actv>MAX){setverdict(fail);}

};

}
Syntactical Structure:

(Port | any port) “.” trigger [“(“ TemplateInstance “)”] [from AddressRef]

[-> [value VariableRef] [sender VaraibleRef]] [timestamp VariableRef]]

4.3.3
Obtain the reception time for procedure calls with getcall statement

The existing redirections for getcall are extended by an optional clause “timestamp VariableRef”. A getcall statement statement that holds a timestamp clause and that is executed successfully (i.e. it matches an incoming call) allocates the given variable with the reception time of the matched message.

EXAMPLE 1:

p.gettcall(call: {m})-> timestamp myTime;

// yields the reception time ot the message call matched by m

 if(myTime>MAX){setverdict(fail);}

EXAMPLE 2:

alt{

[] p.gettcall(call: {m1})-> timestamp f_actv {

if(f_actv>MAX){setverdict(fail);}

};

[] p.gettcall(call: {m2})-> timestamp r_actv {

if(f_actv>MAX){setverdict(fail);}

};

}
Syntactical Structure:

(Port | any port) “.” getcall [“(“ TemplateInstance “)”] [from AddressRef]

 [“->”
 [param “(“ { VariabeleRef “:=” ParameterIdentifier) “,” } |

 { VariableRef | NotUsedSymbol) “,” }

 “)”]

[sender VaraiableRef]

[timestamp VariableRef]

]
4.3.4
Obtain the reception time for procedure replies with the getreply statement

The existing redirections for getreply are extended by an optional clause “timestamp VariableRef”. A getreply statement that holds a timestamp clause and that is executed successfully (i.e. it matches an incoming procedure reply) allocates the given variable with the reception time of the matched message.

EXAMPLE 1:

p.getreply(call: {m})-> timestamp myTime;

// yields the reception time ot the message call matched by m

 if(myTime>MAX){setverdict(fail);}

EXAMPLE 2:

p.call(call: {_message:= m},20.0){

[] p.getreply(call: {m1})-> timestamp f_actv {

if(f_actv>MAX){setverdict(fail);}

};

[] p.getreply(call: {m2})-> timestamp r_actv {

if(f_actv>MAX){setverdict(fail);}

};

}
Syntactical Structure:

(Port | any port) “.” getreply [“(“ TemplateInstance [value TemplateInstance] “)”] [from AddressRef]
[“->” [value VariableRef]

 [param “(“ { VariabeleRef “:=” ParameterIdentifier) “,” } |

 { VariableRef | NotUsedSymbol) “,” }

 “)”]

 [sender VaraiableRef]

 [timestamp VariableRef]

]

4.3.5
Obtain the reception time for exceptions with the catch statement

The existing redirections for getreply are extended by an optional clause “timestamp VariableRef”. A catch statement statement that holds a timestamp clause and that is executed successfully (i.e. it matches an incoming exception) allocates the given variable with the reception time of the matched message.

EXAMPLE 1:

p.catch(timeout)-> timestamp myTime;

// yields the reception time ot the message call matched by m

 if(myTime>MAX){setverdict(fail);}

EXAMPLE 2:

p.call(call: {_message:= m},20.0){

[] p.getreply(call: {m1})-> timestamp f_actv {

if(f_actv>MAX){setverdict(fail);}

};

[] p.catch(*)-> timestamp r_actv {

if(f_actv>MAX){setverdict(fail);}

};

}
Sntactical Structure:

(Port | any port) “.” catch [“(“ (Signature “,” TemplateInstance) | TimeoutKeyword “)”] [from AddressRef]
[“->” [value VariableRef

 [sender VaraiableRef]

 [timestamp VariableRef]

]

4.4

The wait statement

The wait statement suspends the execution of a component until a given point in time. The time point is specified as a float value and relates to the internal clock.

The execution of wait statement suspends the execution of the related component until the point in time specified by its argument. If the argument holds a value that precedes the actual clock value an error verdict shall be set.

EXAMPLE 1:

wait(100.0); // suspends the execution of a component

 // until 100.0 seconds after the start of the testcase

Syntactical Structure:
WaitStatement::= wait “(” Expression “)”
Besides the exact measurement of timing information regarding incoming communication events, a real time test system has to ensure the correct timming for message and procedure call application. Actually we consider to realize this correct scheduling of message and procedure call application by combining the wait statement directly with the send operation. In this case, the execution of a test component is suspended until the given point in time is reached and afterwards the send operation is executed.

EXAMPLE 2:

wait(specified_send_time);

p_out.send(OUT_MSG);

// suspends the sending of OUT_MSG until specified_send_time is reached
Alternatively we propose to introduce a separate statement for message and procedure call scheduling. The at-statement, which integrates directly with all of the communication operation for the autgoing communication suspends the execution of the send, call, or raise statements until the scheduling time is reached. On the one hand side this approach introduces another new keyword to TTCN-3. On the other hand side it fits much better to the proposed changes on TRI interface and thus directly enables the delegtation of message scheduling to the system adapter (see triSendRT).
EXAMPLE 1:

p_out.send at specified_sendtime(OUT_MSG);

// suspends the sending of OUT_MSG until specified_send_time is reached
5
Package semantics

6
TRI extensions for the package

6.1
triStartClock (TE → PA)

	Signature
	TriStatus triStartClock(in long ticksPerSecond)

	In Parameters
	ticksPerSecond the precision of the clock given in ticks per second

	Out Parameters
	n.a

	Return Value
	The return status of the operation. The return status indicates the success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	n.a.

	Effect
	The operation starts the test system clock with a given precision. The precision is defined by the in parameter ticksPerSecond. The parameter specifies the number of time units (ticks) that characterizes a second .

6.2
triReadClock (TE → PA)

	Signature
	TriStatus triReadClock(out long timepoint)

	In Parameters
	n.a.

	Out Parameters
	timepoint current time

	Return Value
	The return status of the operation. The return status indicates the success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	There was a preceding invocation of

 triStartClock(int lont ticksPerSecond)

	Effect
	The operation yields the actual clock value. The clock value is given by the out parameter timepoint, which represents the number of time units (ticks) that has elapsed since the start of the clock (see triStartClock).

6.3
triBeginWait (TE → PA)

	Signature
	TriStatus triBeginWait(in long timepoint,
 in TriComponentIDType component)

	In Parameters
	timepoint point in time until execution of a component should be suspended

component component whose execution should be suspended

	Out Parameters
	n.a.

	Return Value
	The return status of the operation. The return status indicates the success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	There was a preceding invocation of

 triStartClock(int lont ticksPerSecond)

	Effect
	The operation signals that the execution of component component should be suspended until the specified point of time timepoint.
At this point in time the PA will issue a

 triEndWait(component)

operation.

timepoint is expressed as the number of time units (ticks), that has elapsed since the the start of the clock (see triStartClock).

A call to this operation returns immediately. The operation merely triggers the corresponding triEndWait operation, it does not schedule the execution of the component.

If timepoint represent a point of time in the past then the operation returns a TRI_Error value and has no other effect.

6.4
triEndWait (PA → TE)

	Signature
	void triEndWait(in TriComponentIDType component)

	In Parameters
	component component of the corresponding triBeginWait operation

	Out Parameters
	n.a.

	Return Value
	n .a

	Constraints
	There was a preceding invocation of

 triBeginWait(timepoint, component)

	Effect
	The operation signals that the point in time timepoint that was specified in the corresponding

 triBeginWait(timepoint, component)

has been reached.

6.5
triEnqueueMsgRT (SA (TE)
To be able to allow the exact measurement of message reception at system adapter level, we extend the original triEnqueueMsg operation with an additational parameter int long timestamp. The parmeter allows the propagation of the message reception time taken at system adapter level to the TE. Similar extension are provided for the other receiving statements (i.e. triEnqueCallRT, triEnqueReplyRT, triEnqueExceptionRT etc.).
	Signature
	void triEnqueueMsgRT(in TriPortIdType tsiPortId,
in TriAddressType SUTaddress,
in TriComponentIdType componentId,
in TriMessageType receivedMessage,

 in long timestamp)

	In Parameters
	tsiPortId
identifier of the test system interface port via which the message is enqueued by the SUT Adapter
SSUTaddress
(optional) source address within the SUT
componentId
identifier of the receiving test component
receivedMessage
the encoded received message

timestamp the point in time, when the message has been received from the SUT

	Out Parameters
	n.a.

	Return Value
	Void

	Constraints
	This operation is called by the SA after it has received a message from the SUT. It can only be used when tsiPortId has been either previously mapped to a port of componentId or has been referenced in the previous triExecuteTestCase statement.

In the invocation of a triEnqueueMsgRT operation receivedMessage shall contain an encoded value.

	Effect
	This operation shall pass the message to the TE indicating the component componentId to which the TSI port tsiPortId is mapped.

The decoding of receivedMessage has to be done in the TE.

6.6
triSendRT (TE → SA)

To be able to allow the time triggered message scheduling at system adapter level, we extend the original triSend operation with an additational parameter int long timestamp. The parmeter allows the definition of a message scheduling time, that has to be controlled by the adapter. Thus, it becomes possible to deliver a message to the system adapter before its intended scheduling time. The adapter is then responsible to schedule the message in time. Similar extension are provided for the other sending statements (i.e. triSendBCRT, triEnqueReplyRT, triEnqueExceptionRT).
	Signature
	TriStatusType triSendRT(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriMessageType sendMessage,
 in long timestamp)

	In Parameters
	componentId identifier of the sending test component
tsiPortId identifier of the test system interface port via which the
 message is sent to the SUT Adaptor
SUTaddress (optional) destination address within the SUT
sendMessage the encoded message to be sent
timestamp the point in time when the message has to be sent to the SUT

	Out Parameters
	n.a.

	Return Value
	The return status of the triSendRT operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN-3 unicast send operation on a component port, which has been mapped to a TSI port. This operation is called by the TE for all TTCN-3 send operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.

The encoding of sendMessage has to be done in the TE prior to this TRI operation call.

	Effect
	The SA can send the message to the SUT.

The triSendRT operation returns TRI_OK in case it has been completed successfully and in time. Otherwise TRI_Error shall be returned. Notice that the return value TRI_OK does not imply that the SUT has received sendMessage.

7
TCI extensions for the package

If needed for the package definition.
7.1
User defined subdivisions of clause(s) from here onwards

<Text>

8
xxx extensions for the package

If needed for the package definition.
<Text>

8.1
User defined subdivisions of clause(s) from here onwards

<Text>

<PAGE BREAK>
Annex A (normative):
BNF and static semantics
Each annex shall start on a new page (insert a page break between annex A and B, annex B and C, ...).

Use the Heading 8 style for the title and the Normal style for the text.

A.1
First clause of the annex

<Text>

A.1.1
First subdivided clause of the annex

<Text>

<PAGE BREAK>

Annex (normative):
Title of normative annex

If needed for the package definition.
Each annex shall start on a new page (insert a page break between annex A and B, annex B and C, ...).

Use the Heading 8 style for the title and the Normal style for the text.

A.1
First clause of the annex

<Text>

A.1.1
First subdivided clause of the annex

<Text>

<PAGE BREAK>

Annex (informative):
Title of informative annex

If needed for the package definition.
Each annex shall start on a new page.

Use the Heading 8 style for the title and the Normal style for the text.

B.1
First clause of the annex

<Text>

B.1.1
First subdivided clause of the annex

<Text>

<PAGE BREAK>

Annex <y> (informative):
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itselft (see clause 12.2 of the EDRs http://portal.etsi.org/edithelp/other/EDRs_Navigator.chm).

It shall not include the following:

· normative references (such references shall be listed in clause 2.1);

· informative references (such references shall be listed in clause 2.2).

Use the Heading 8 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>
History

	Document history

	<Version>
	<Date>
	<Milestone>

	0.1
	28.11.2008
	Initial Draft by TEMEA

	
	
	

	
	
	

	
	
	

[image: image1.wmf]_1065009619.doc

