Error! No text of specified style in document.
8
Error! No text of specified style in document.

6
Types and values

TTCN‑3 supports a number of predefined basic types. These basic types include ones normally associated with a programming language, such as integer, boolean and string types, as well as some TTCN‑3 specific ones such as verdicttype. Structured types such as record types, set types and enumerated types can be constructed from these basic types.

The special data type anytype is defined as the union of all known data types and the address type within a module.

Special types associated with test configurations such as address, port and component may be used to define the architecture of the test system (see clause 21).

The special type default may be used for the default handling (see clause 20.5).

The TTCN‑3 types are summarized in table 3.

Table 3: Overview of TTCN‑3 types

	Class of type
	Keyword
	Sub-type

	Simple basic types
	integer
	range, list

	
	float
	range, list

	
	boolean
	list

	
	verdicttype
	list

	Basic string types
	bitstring
	list, length

	
	hexstring
	list, length

	
	octetstring
	list, length

	
	charstring
	range, list, length, pattern

	
	universal charstring
	range, list, length, pattern

	Structured types
	record
	list (see note)

	
	record of
	list (see note), length

	
	set
	list (see note)

	
	set of
	list (see note), length

	
	enumerated
	list (see note)

	
	union
	list (see note)

	Special data type
	anytype
	list

	Special configuration types
	address
	

	
	port
	

	
	component
	

	Special default type
	default
	

	NOTE:
List subtyping of these types is possible when defining a new constrained type from an already existing parent type but not directly at the declaration of the first parent type.

NOTE:
Behaviour types for TTCN-3 are defined in the optional package [i.14].

6.1
Basic types and values

6.1.0
Simple basic types and values

TTCN‑3 supports the following basic types:

a) integer: a type with distinguished values which are the positive and negative whole numbers, including zero.

Values of integer type shall be denoted by one or more digits; the first digit shall not be zero unless the value is 0; the value zero shall be represented by a single zero.

b) float: a type to describe floating-point numbers and special float values.

In general, floating point numbers can be defined as:<mantissa> × <base><exponent>,

where <mantissa> is a positive or negative integer, <base> a positive integer (in most cases 2, 10 or 16) and <exponent> a positive or negative integer.

In TTCN‑3, the floating-point number value notation is restricted to a base with the value of 10. Floating point values can be expressed by using two forms of value notations:

· the decimal notation with a dot in a sequence of numbers like, 1.23 (which represents 123×10-2), 2.783 (i.e. 2783 × 10-3) or -123.456789 (which represents -123 456 789 × 10-6); or

· by two numbers separated by E where the first number specifies the mantissa and the second specifies the exponent, for example 12.3E4 (which represents 123 × 103) or -12.3E-4 (which represents ‑123 × 10‑5).

NOTE:
In contrast to the general definition of float values, the mantissa of theTTCN‑3 value notation, beside integers, allows decimal numbers as well.

The special values of the float type consist of infinity (positive infinity), -infinity (negative infinity) and the value not_a_number. For the ordering of special values see clauses 7.1.1 and 7.1.3.
c) boolean: a type consisting of two distinguished values.

Values of boolean type shall be denoted by true and false.
d) verdicttype: a type for use with test verdicts consisting of 5 distinguished values. Values of verdicttype shall be denoted by pass, fail, inconc, none and error.

6.1.1
Basic string types and values

...
6.1.2
Sub-typing of basic types

User-defined types shall be denoted by the keyword type. With user-defined types it is possible to create sub-types (such as lists, ranges and length restrictions) on basic types, structured types and anytype according to table 3.

6.1.2.1
Lists of values

TTCN‑3 permits the specification of a list of distinguished values as listed in table 3. The values in the list shall be instances of the type being constrained and shall be a subset of the values defined by the type being constrained. The subtype defined by this list restricts the allowed values of the subtype to those values in the list. Constants used in the constant expressions defining the values shall meet with the restrictions in clause 10.

EXAMPLE:

type bitstring MyListOfBitStrings ('01'B, '10'B, '11'B);

type float pi (3.1415926);

type charstring MyStringList ("abcd", "rgy", "xyz");

type universal charstring SpecialLetters

 (char(0, 0, 1, 111), char(0, 0, 1, 112), char(0, 0, 1,
113));

6.1.2.2
Lists of types

TTCN‑3 permits the specification of a list of subtypes as listed in table 3 for value lists. The types in the list shall be subtypes of the root type. The subtype defined by this list restricts the allowed values of the subtype to the union of the values of the referenced subtypes.

EXAMPLE:

type bitstring BitStrings1 ('0'B, '1'B);

type bitstring BitStrings2 ('00'B, '01'B, '10'B, '10'B);

type bitstring BitStrings_1_2 (Bitstrings1, Bitstrings2);

6.1.2.3
Ranges

TTCN‑3 permits the specification of range constraints for the types integer, charstring, universal charstring and float (or derivations of these types). For integer and float, the subtype defined by the range restricts the allowed values of the subtype to the values in the range including the lower boundary and the upper boundary. In order to specify an infinite integer or float range, the keyword infinity may be used instead of a value indicating that there is no lower or upper boundary. The upper boundary shall be greater than or equal to the lower boundary. In case of float, the special value not_a_number is not allowed in a range constraints.
NOTE:
The "value" for infinity is implementation dependent. Use of this feature may lead to portability problems.
In the case of charstring and universal charstring types, the range restricts the allowed values for each separate character in the strings. The boundaries shall evaluate to valid character positions according to the coded character set table(s) of the type (e.g. the given position shall not be empty). Empty positions between the lower and the upper boundaries are not considered to be valid values of the specified range.
Constants used in the constant expressions defining the values shall meet with the restrictions in clause 10.
EXAMPLE 1:

type integer MyIntegerRange (0 .. 255);

type integer MyIntegerRange (-infinity .. -1); // All negative integer numbers

type float piRange (3.14 .. 3142E-3);

type float LessThanPi (-infinity .. 3142E-3);

type float Numbers (-infinity .. infinity); //includes all float values but not_a_number

type float Wrong (-infinity .. not_a_number);

 // causes an error as not_a_number is not allowed in range subtyping
EXAMPLE 2:

type charstring MyCharString ("a" .. "z");

// Defines a string type of any length with each character within the specified range

type universal charstring MyUCharString1 ("a" .. "z");

// Defines a string type of any length with each character within the range from a to z

// (character codes from 97 to 122), like "abxyz";
// strings containing any other character (including control characters), like

// "abc2" are disallowed.
type universal charstring MyUCharString2 (char(0, 0, 1, 111) .. char(0, 0, 1, 113));

// Defines a string type of any length with each character within the range specified using

// the quadruple notation

6.1.2.4
String length restrictions

…
6.1.2.5
Pattern sub-typing of character string types

...
6.1.2.6
Mixing sub-typing mechanisms

6.1.2.6.1
Mixing patterns, lists and ranges

Within integer and float (or derivations of these types) sub-type definitions it is allowed to mix lists and ranges. It is possible to mix both value list and type list subtyping with each other and with range subtyping. Overlapping of different constraints is not an error.

EXAMPLE 1:

type integer MyIntegerRange (1, 2, 3, 10 .. 20, 99, 100);

type float lessThanPiAndNaN (-infinity .. 3142E-3, not_a_number);

Within charstring and universal charstring sub-type definitions it is not allowed to mix pattern, value list, type list, or range constraints.

EXAMPLE 2:

type charstring MyCharStr0 ("gr", "xyz");

// contains character strings gr and xyz;

type charstring MyCharStr1 ("a".."z");

// contains character strings of arbitrary length containing characters a to z.

type charstring MyCharStr2 (pattern "[a-z]#(3,9)");

// contains character strings of length form 3 to 9 characters containing characters a to z

6.1.2.6.2
Using length restriction with other constraints

…
6.3.1
Type compatibility of non-structured types

For variables, constants, templates, etc. of simple basic types and bitsring, hexstring and octetstring types the value "b" is compatible to type "A" if type "B" resolves to the same root type as type "A" (e.g. integer) and it does not violate subtyping (e.g. ranges, length restrictions) of type "A".

EXAMPLE 1: Compatibility of integers

// Given

type integer MyInteger(1 .. 10);

:

var integer x;

var MyInteger y;

// Then

y := 5; // is a valid assignment

x := y;

// is a valid assignment, because y has the same root type as x and no subtyping is violated

x := 20; // is a valid assignment

y := x;

// is NOT a valid assignment, because the value of x is out of the range of MyInteger

x := 5; // is a valid assignment

y := x;

// is a valid assignment, because the value of x is now within the range of MyInteger

EXAMPLE 2: Compatibility of floats

// Given

type float PositiveFloats(0.0 .. infinity);

:

var PositiveFloats x;

var float y;

// Then

y := 5.0; // is a valid assignment

x := y;

// is a valid assignment, because y has the same root type as x and no subtyping is violated

y := -20.0; // is a valid assignment

x := y;

// causes an error, because the value of y is out of the range of PositiveFloats

y := not_a_number; // is a valid assignment

x := y;

// causes an error, because the value not_a_number is out of the range of PositiveFloats
EXAMPLE 3: Compatibility of charstrings

//Given

type charstring MyChar length (1);

type charstring MySingleChar length (1);

var MyChar myCharacter;

var charstring myCharString;

var MySingleChar mySingleCharString := "B";

//Then

myCharString := mySingleCharString;

//is a valid assignment as charstring restricted to length 1 is compatible with charstring.

myCharacter := mySingleCharString;

//is a valid assignment as two single-character-length charstrings are compatible.

//Given

myCharString := "abcd";

//Then

myCharacter := myCharString[1];

//is valid as the r.h.s. notation addresses a single element from the string

//Given

var charstring myCharacterArray [5] := {"A", "B", "C", "D", "E"}

//Then

myCharString := myCharacterArray[1];

//is valid and assigns the value "B" to myCharString;

For variables, constants, templates etc. of charstring type, value 'b' is compatible with a universal charstring type 'A' unless it violates any type constraint specification (range, list or length) of type "A".

For variables, constants, templates etc. of universal charstring type, value 'b' is compatible with a charstring type 'A' if all characters used in value 'b' have their corresponding characters (i.e. the same control or graphical character using the same character code) in the type charstring and it does not violate any type constraint specification (range, list or length) of type "A".
7
Expressions

TTCN‑3 allows the specification of expressions using the operators defined in clause 7.1.

Syntactical Structure
SingleExpression |

"{" { (FieldReference ":=" (Expression | "-")) [","] } "}" |
// compound expression

"{" [{ (Expression | "-") [","] }] "}"

// compound expression

Semantic Description
Expressions may be built from other (simple) expressions. Functions used in expressions shall have a return clause. The operands of the operators used in an expression shall be values and their root types shall be the types specified for the appropriate operator in the subsequent clauses.

Compound expressions are used for expressions of array, record, record of and set of types.

Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

e) Operands of operators used in expressions shall be completely initialized.

f) The root types of the operands shall be the types specified for the appropriate operand.
This means also that all fields and elements of structured types referenced in an expression shall contain completely initialized values, while other fields and elements, not used in the expression, may be uninitialized or contain omit.

Examples

(x + y - increment(z))*3

// single expression

{ a:= 1, b:= true }

// compound expression, field expression list

{ 1, true }

// compound expression, value list

7.1
Operators

TTCN‑3 supports a number of predefined operators that may be used in the terms of TTCN‑3 expressions. The predefined operators fall into seven categories:

g) arithmetic operators;

h) list operator;

i) relational operators;

j) logical operators;

k) bitwise operators;

l) shift operators;

m) rotate operators.

Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

n) Values used in operators shall be completely initialized.

These operators are listed in table 5.

Table 5: List of TTCN‑3 operators

	Category
	Operator
	Symbol or Keyword

	Arithmetic operators
	addition
	+

	
	subtraction
	-

	
	multiplication
	*

	
	division
	/

	
	modulo
	mod

	
	remainder
	rem

	String operators
	concatenation
	&

	Relational operators
	equal
	==

	
	less than
	<

	
	greater than
	>

	
	not equal
	!=

	
	greater than or equal
	>=

	
	less than or equal
	<=

	Logical operators
	logical not
	not

	
	logical and
	and

	
	logical or
	or

	
	logical xor
	xor

	Bitwise operators
	bitwise not
	not4b

	
	bitwise and
	and4b

	
	bitwise or
	or4b

	
	bitwise xor
	xor4b

	Shift operators
	shift left
	<<

	
	shift right
	>>

	Rotate operators
	rotate left
	<@

	
	rotate right
	@>

The precedence of these operators is shown in table 6. Within any row in this table, the listed operators have equal precedence. If more than one operator of equal precedence appears in an expression, the operations are evaluated from left to right. Parentheses may be used to group operands in expressions, in which case a parenthesized expression has the highest precedence for evaluation.

Table 6: Precedence of Operators

	Priority
	Operator type
	Operator

	highest

Lowest
	Unary

Binary

Binary

Unary

Binary

Binary

Binary

Binary

Binary

Binary

Unary

Binary

Binary

Binary
	(…)

+, -

*, /, mod, rem

+, -, &

not4b

and4b

xor4b

or4b

<<, >>, <@, @>

<, >, <=, >=

==, !=

not

and

xor

or

7.1.1
Arithmetic operators

The arithmetic operators represent the operations of addition, subtraction, multiplication, division, modulo and remainder. Operands of these operators shall be integer values (including derivations of integer) or floating-point numbers (including derivations of float, containing numeric values only), except for mod and rem which shall be used with integer (including derivations of integer) types only.
NOTE:
I.e. the special float values infinity, -infinity and not_a_number shall not be used with arithmetic operators.
With integer types, the result type of arithmetic operations is integer. With float types, the result type of arithmetic operations is float.

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of using the minus operator is the negative value of the operand if it was positive and vice versa. The result of using the plus operator is the value of the operand, i.e. a positive value if the operand value was positive and a negative value if the operand value was negative.

The result of performing the division operation (/) on two:

o) integer values gives the whole integer part of the value resulting from dividing the first integer by the second (i.e. fractions are discarded);

p) numeric float values gives the float value resulting from dividing the first float by the second (i.e. fractions are not discarded).

The operators rem and mod compute on operands of type integer and have a result of type integer. The operations x rem y and x mod y compute the rest that remains from an integer division of x by y. Therefore, they are only defined for non-zero operands y. For positive x and y, both x rem y and x mod y have the same result but for negative arguments they differ.

Formally, mod and rem are defined as follows:

x rem y = x - y * (x/y)

x mod y
= x rem |y|

when
x >= 0

= 0

when
x < 0
and
x rem |y| = 0

= |y| + x rem |y|

when
x < 0
and
x rem |y| < 0

Table 7 illustrates the difference between the mod and rem operator:

Table 7: Effect of mod and rem operator

	x
	-3
	-2
	-1
	0
	1
	2
	3

	x mod 3
	0
	1
	2
	0
	1
	2
	0

	x rem 3
	0
	-2
	-1
	0
	1
	2
	0

7.1.2
List operator

The predefined list operator (&) performs concatenation of values of string types, record of, set of, or array of the same root types. The operation is a simple concatenation from left to right. No form of arithmetic addition is implied. The result type is the root type of the operands.

NOTE:
In case of the list types, both the outer type (i.e. record of, set of or array) and the iterated inner type need to have the same root type in a recursive manner.
EXAMPLE:

'1111'B & '0000'B & '1111'B gives '111100001111'B

7.1.3
Relational operators

The predefined relational operators are equality (==), less than (<), greater than (>), non‑equality to (!=), greater than or equal to (>=) and less than or equal to (<=). The result type of all these operations is boolean.

The relational operators less than (<), greater than (>), greater than or equal to (>=), and less than or equal to (<=) shall have only operands of type integer (including derivations of integer), float (including derivations of float), or instances of the same enumerated type. It is not allowed to compare instances of different root types.

Operands of equality (==) and non-equality (!=) shall be values of the same root type and the values being compared shall obey the following rules. This implies that instances of types not mentioned below shall not be operands of equality and non-equality.

NOTE:
As address is more a predefined type name than a distinct type with its own properties, the same rules apply to an address type and to its derivatives as the rules were if the type was defined with a name different from address.

· Two integer or values are equal if and only if they contain the same value. Otherwise, normal mathematical ordering is applied.
· Two floating-point numbers are equal if and only if they contain the same value. The values minus zero and plus zero are two distinc values (e.g. they are encoded differently in some standardized languages) and minus zero is less than plus zero. Otherwise, normal mathematical ordering is applied. The special values ‑infinity, infinity and not_a_number are equal to themselves only. The special value ‑infinity is less than any other foat value. The special value infinity is greater than any numerical float values and -infinity. The special value not_a_number is greater than any other float value (including infinity).
· Two charstring or two universal charstring values are equal if and only if they have equal lengths and the characters at all positions are the same.

· For values of bitstring, hexstring or octetstring types, the same equality rule applies as for charstring values with the exception, that fractions which shall equal at all positions are bits, hexadecimal digits or pairs of hexadecimal digits accordingly.

· Two record values, set values, record of values or set of values are equal if and only if their effective value structures are compatible (see clause 6.3) and the actual values of all corresponding fields are equal. record values may also be compared to record of values and set values to set of values. In these cases the same rule applies as for comparing two record or set values.
· Values of the same union type, and values of different union types in which at least one of the alternatives is compatible with the other type (see clause 6.3.2.4) can be compared (independent if a compatible alternative is the selected one or not). Two values of union types are equal if and only if in both values the name of the selected alternative is identical, they are compatible with the type of the other value, and the actual values of the chosen fields are equal.
· Values of the same or any two anytype types can be compared. For anytype values the same rule apply as to union values, with the addition that names of types defined with the same name in different modules do not denote the same name of the selected alternatives.
· Two default or two component values are equal if and only if they contain the same value (i.e. they designate the same default or test component, independent of the actual state of the denoted object).

EXAMPLE:

// Given

type
set
S1
{

integer
a1
optional,

integer
a2
optional,

integer
a3
optional

};

type
set
S2
{

integer
b1
optional,

integer
b2
optional,

integer
b3
optional

};

type
set
S3
{

integer
c1
optional,

integer
c2
optional,

};

type
set of integer
SI;

type
union
U1
{

integer
d1,

integer
d2,

};

type
union
U2
{

integer
e1,

integer
e2,

};

type
union
U3
{

integer
d1,

integer
d2,

boolean
d3

};

// And

const
S1
s1
:=
{ a1 := 0, a2 := omit, a3 := 2 };

// Notice that the order of defining values of the fields does not matter

const
S2
s2a
:=
{ b1 := 0, b3 := 2, b2 := omit };

const
S2
s2b
:=
{ b2 := 0, b3 := 2, b1 := omit };

const
S3
s3
:=
{ c1 := 0, c2 :=2 };

var

SI
v_si:=
{ 0, -, 2 };

const
SI
si
:=
{ 0, 2 };

const
U1
u1
:=
{ d1:= 0 };

const
U2
u2
:=
{ e1:= 0 };

const
U3
u3;
:=
{ d1:= 0 };

// Then

s1 == s2a;

// returns true

s1 == s2b;

// returns false, because neither a1 nor a2 are equal to their counterparts

// (the corresponding element is not omitted)

s1 == s3;

// returns false, because the effective value structures of s1 and s3 are not compatible

s1 == v_si;

// causes test case error as v_si is not completely initialized

// (2nd element is left uninitialized)

s1 == si;

// returns false, as the counterpart of the omitted a2 is 2,

// but the counterpart of a3 is undefined

s3 == si;

// returns true

u1 == u2;

// causes error as U1 and U2 have no common subset of alternatives

u1 == u3;

// returns true, as alternatives with the same names are chosen and

// the actual values in the selected alternatives are equal

7.1.4
Logical operators

…
A.1.6
TTCN‑3 syntax BNF productions

 AUTONUM PredefinedValue ::= BitStringValue |

 BooleanValue |

 CharStringValue |

 IntegerValue |

 OctetStringValue |

 HexStringValue |

 VerdictTypeValue |

 EnumeratedValue |

 FloatValue |

 AddressValue |

 OmitValue
 AUTONUM FloatValue ::= FloatDotNotation | FloatENotation | InfinityKeyword | NaNKeyword
 AUTONUM NaNKeyword ::= "not_a_number"
<Note for Ina: PredefinedValue is reached via UnaryExpression ::= [UnaryOp] Primary, which may add the minus sign; thus the BNF alone would also allow –not_a_number ; but I could not find a simple way to disallow it in the BNF.
12
Declaring timers

TTCN-3 provides a timer mechanism. Timers can be declared and used in the module control part, test cases, functions and altsteps. Additionally, timers can be declared in component type definitions. These timers can be used in test cases, functions and altsteps which are running on the given component type.

A timer declaration may have an optional default duration value assigned to it. The timer shall be started with this value if no other value is specified. The timer value shall be a non-negative float value (i.e. greater than or equal to 0.0) where the base unit is seconds.

In addition to single timer instances, timer arrays can also be declared. Default duration(s) of the elements of a timer array shall be assigned using a value array. Default duration(s) assignment shall use the array value notation as specified in clause 6.2.7. If the default duration assignment is wished to be skipped for some element(s) of the timer array, it shall explicitly be declared by using the not used symbol ("-").

Syntactical Structure
timer { TimerIdentifier [ArrayDef] ":=" TimerValue [","] } [";"]

Semantic Description
Timers are local to components. A component can start and stop a timer, check if a timer is running, read the elapsed time of a running timer and process timeout events after timer expiration. The timer value is interpreted with a base unit of seconds.

NOTE 1:
Timers declared and started in scope units such as functions cease to exist when the scope unit is left. They do not contribute to the test behaviour once the scope unit is left.
NOTE 2:
It is not possible to define a timer array as type.

Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

q) In case of a single timer, the default duration value shall resolve to a non-negative numerical float value (i.e. greater or equal 0.0, infinity and not_a_number are disallowed).

r) In case of a timer array, it shall resolve to an array of float values obeying to restriction a) above of the same size as the size of the timer array.

Examples
EXAMPLE 1:
Single timer.

timer MyTimer1 := 5E-3;

// declaration of the timer MyTimer1 with the default value of 5ms

timer MyTimer2;
// declaration of MyTimer2 without a default timer value i.e. a value has

// to be assigned when the timer is started

EXAMPLE 2:
Timer array.

timer t_Mytimer1[5] := { 1.0, 2.0, 3.0, 4.0, 5.0 }

// all elements of the timer array get a default duration.

timer t_Mytimer2[5] := { 1.0, -, 3.0, 4.0, 5.0 }

// the second timer (t_Mytimer2[1]) is left without a default duration.

returning the resulting integer.
23.2
The Start timer operation

The start timer operation is used to indicate that a timer shall start running.
Syntactical Structure
((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "]" })

"." start ["(" TimerValue ")"]

Semantic Description
When a timer is started, its name is added to the list of running timers (for the given scope unit).

The optional timer value parameter shall be used if no default duration is given, or if it is desired to override the default value specified in the timer declaration. When a timer duration is overridden, the new value applies only to the current instance of the timer, any later start operations for this timer, which do not specify a duration, shall use the default duration.

Starting a timer with the timer value 0.0 means that the timer times out immediately. Starting a timer with a negative timer value, e.g. the timer value is the result of an expression, or without a specified timer value shall cause a runtime error.

The timer clock runs from the float value zero (0.0) up to maximum stated by the duration parameter.

The start operation may be applied to a running timer, in which case the timer is stopped and re-started. Any entry in a timeout-list for this timer shall be removed from the timeout-list.

Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

s) Timer value shall be a non‑negative numerical float number (i.e. greater or equal 0.0, infinity and not_a_number are disallowed).

C.8
Float to integer

float2int(in float invalue) return integer

This function converts a float value into an integer value by removing the fractional part of the argument and returning the resulting integer.

In addition to the general error causes in clause 16.1.2, error causes are:

invalue is infinity, -infinity or not_a_number.
EXAMPLE:

float2int(3.12345E2) = float2int(312.345) = 312

C.27
Character string to float

str2float(in charstring invalue) return float
This function converts a charstring comprising a number into a float value. The format of the number in the charstring shall follow rules in clause 6.1.0, items a) or b) with the following exceptions:

· leading zeros are allowed;

· leading "+" sign before positive values is allowed;

· "-0.0" is allowed;

· no numbers after the dot in the decimal notation are allowed.

In addition to the general error causes in clause 16.1.2, error causes are:

· the format of invalue is different than defined above.

NOTE:
On real test systems the float interpretation of invalue may lead to an overflow problem that causes compile time or run-time error. However, this is out of the scope of the present document.

EXAMPLE:

str2float("12345.6") // is the same as str2float("123.456E+02")

str2float("1.6") // returns a float value equal to 1.6

str2float("+001.") // returns a float value equal to 1.0

str2float("+001") // returns a float value equal to 1.0

str2float("-0.0") // returns a float value equal to -0.0

ETSI

