8.2.3
Importing from modules

It is possible to re-use visible definitions specified in different modules using the import statement. Every definition in a TTCN‑3 module has an associated visibility, which is by default public (see clause 8.2.5).

NOTE 1:
Groups are public only. Importing a group means that only the visible elements of the group are being imported.

8.2.3.1
General format of import

An import statement can be used anywhere in the module definitions part.

Syntactical Structure
[Visibility] import from ModuleId

(

(all [except "{" ExceptSpec "}"])

|

("{" ImportSpec "}")

)

[";"]

Semantic Description
TTCN‑3 supports the import of the following definitions: module parameters, user defined types, signatures, constants, data templates, signature templates, functions, external functions, altsteps and test cases. Each definition has a name (defines the identifier of the definition, e.g. a function name), a specification (e.g. a type specification or a signature of a function) and in the case of functions, altsteps and test cases an associated behaviour description. In addition, import statements of one module can be explicitly imported by another module (see clause 8.2.3.7). Only definitions or import statements visible from the importing module can be imported (see clause 8.2.5).
In contrast to module definitions, which are by default public, import statements are by default private.
EXAMPLE:

	
	Name
	Specification
	Behaviour description

	function
	MyFunction
	(inout MyType1 MyPar) return MyType2
runs on MyCompType
	{

 const MyType3 MyConst := …;

 : // further behaviour

}

	
	Specification
	Name
	Specification

	type
	record
	MyRecordType
	{

 field1 MyType4,
 field2 integer

}

	
	Specification
	Name
	Specification

	template
	MyType5
	MyTemplate
	:= {

 field1 := 1,
 field2 := MyConst, // MyConst is a module constant

 field3 := ModulePar // ModulePar is module parameter

}

Behaviour descriptions have no effect on the import mechanism, because their internals are considered to be invisible to the importer when the corresponding functions, altsteps or test cases are imported. Thus, they are not considered in the following descriptions.

The specification part of an importable definition contains local definitions (e.g. field names of structured type definitions or values of enumerated types) and referenced definitions (e.g. references to type definitions, templates, constants or module parameters). For the examples above, this means:

	
	Name
	Local definitions
	Referenced definitions

	function
	MyFunction
	MyPar
	MyType1, MyType2, MyCompType

	type
	MyRecordType
	field1, field2
	MyType4, integer

	template
	MyTemplate
	
	MyType5, field1, field2, field3, MyConst, ModulePar

NOTE 1:
The local definitions column refers to identifiers only that are newly defined in the importable definition. Values assigned to individual fields of importable definitions, e.g. in template definitions, may also be considered as local definitions, but they are not important for the explanation of the import mechanism.

NOTE 2:
The referenced definitions field1, field2 and field3 of template MyTemplate are the field names of MyType5, i.e. they are referenced via MyType5.

Referenced definitions are also importable definitions, i.e. the source of a referenced definition can again be structured into a name and a specification part and the specification part also contains local and referenced definitions. In other words, an importable definition may be built up recursively from other importable definitions.

The TTCN‑3 import mechanism is related to the local and referenced definitions used in the specification part of the importable definitions. Table 1 specifies the possible local and referenced definitions of importable definitions.

Table 1: Possible local and referenced definitions of importable definitions
	Importable Definition
	Possible Local Definitions
	Possible Referenced Definitions

	
	
	

	Module parameter
	
	Module parameter type

	User-defined type (for all)
	
	

	· enumerated type
	Concrete values
	

	· structured type
	Field names, nested type definitions
	Field types

	· port type
	
	Message types, signatures

	· component type
	Constant names, variable names, timer names and port names
	Constant types, variable types, port types

	Signature
	Parameter names
	Parameter types, return type, types of exceptions

	Constant
	
	Constant type

	Data Template
	Parameter names
	Template type, parameter types, constants, module parameters, functions

	Signature template
	
	Signature definition, constants, module parameters functions

	Function
	Parameter names
	Parameter types, return type, component type (runs on-clause)

	External function
	Parameter names
	Parameter types, return type

	Altstep
	Parameter names
	Parameter types, component type (runs
on-clause)

	Test case
	Parameter names
	Parameter types, component types (runs on- and system- clause)

	NOTE 1: For the import of import statements see clause 8.2.3.7.
NOTE 2: For the import of groups see clause 8.2.3.3.

The TTCN‑3 import mechanism distinguishes between the identifier of a referenced definition and the information necessary for the usage of a referenced definition within the imported definition. For the usage, the identifier of a referenced definition is not required and therefore not imported automatically.
EXAMPLE 1: Differentiation between information necessary for the usage and the identifier

module A {

 type record MyRec1 {

 integer

field1,

 charstring
field2

 }

}

module B {

 import from A all;

 type record MyRec2 {

 MyRec1
myField1,

 // "myField1" is the local definition, "MyRec1" is a referenced definition;

 // the name "MyRec1" shall be imported in this case as is directly referenced

 boolean
myField2

 }

}

module C {

 import from B all;

 const MyRec2 t_MyRec2 := {

 myField1 := { field1 := 5, field2 := "A" },

 // to define myField1 of MyRec2 the name "MyRec1" is not needed, the

 // information necessary for the usage is its type information,

 // i.e. names and types of its fields field1 and field2

 // which is embeddded in the
imported definition of MyRec2

 myField2 := true

 }

}
If an imported definition has attributes (defined by means of a with statement) then the attributes shall also be imported. The mechanism to change attributes of imported definitions is explained in clause Fehler! Verweisquelle konnte nicht gefunden werden..

NOTE 3:
If the module has global attributes they are associated to definitions without these attributes.

The use of import on single definitions, groups of definitions, definitions of the same kind, etc. may lead to situations where the same definition is referred to more than once. Such cases shall be resolved by the system and definitions shall be imported only once.

NOTE 4:
The mechanisms to resolve such ambiguities, e.g. overwriting and sending warnings to the user, are outside the scope of the present document and should be provided by TTCN‑3 tools.

All import statements and definitions within import statements are considered to be treated independently one after the other in the order of their appearance.

All TTCN‑3 modules shall have their own name space in which all definitions shall be uniquely identified. Name clashes may occur due to import, e.g. import from different modules. Name clashes shall be resolved by using qualified name(s) for the imported definition(s), i.e. prefixing the imported definition (which causes the name clash) by the identifier of the module in which it has been defined; the prefix and the identifier shall be separated by a dot (".").
In cases where there are no ambiguities the prefixing need not (but may) be present when the imported definitions are used. When the definition is referenced in the same module where it is defined, the module identifier of the module (the current module) also may be used for prefixing the identifier of the definition.

Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

a) An import statement shall only be used in the module definitions part and not be used within a control part, function definition, and alike.

b) Only top-level visible definitions of a module may be imported. Definitions which are top-level but invisible to the importing module or which occur at a lower scope (e.g. local constants defined in a function) shall not be imported.

c)
d) A definition is imported together with its name and all local definitions.

NOTE 5:
A local definition, e.g. a field name of a user-defined record type, has only meaning in the context of the definitions in which it is defined, e.g. a field name of a record type can only be used to access a field of the record type and not outside this context.

e) A definition is imported together with all information of referenced definitions that are necessary for the usage of the imported definition, independent of the visibility of the referenced definitions (see clause 8.2.5).

NOTE 6:
If a module A imports a definition from module B that uses a type reference defined in module C, the corresponding information necessary for the usage of that type is automatically imported into module A. Identifiers of referenced definitions are not automatically imported.

f) If the referenced definitions are wished to be used in the importing module, they shall be explicitly imported either directly from its source module or indirectly by importing the import statements of a module importing it (see clause 8.2.3.7).

g) When importing a function, altstep or test case the corresponding behaviour specifications and all definitions used inside the behaviour specifications remain invisible for the importing module.
h) The language specification of the import statement shall not override the language specification of the importing module.
i) The language specification of the import statement shall be identical to the language specification of the source module from which definitions are imported (see clause 8.2.3.8) provided a language specification is defined in the source module. If not, the language specification in the import statement is taken as the language specification of the source module. If the source module uses however language concepts not being part of that language specification, this causes an error for the import statement.
j)
Examples
EXAMPLE 1:
Selected import examples.
module MyModuleA

{
:

// Scope of the imported definitions is global to MyModuleA

import from MyModuleB all;
// import of all definitions from MyModuleB

import from MyModuleC {

// import of selected definitions from MyModuleC

type MyType1, MyType2; // import of types MyType1 and MyType2

template all

// import of all templates

}

:

function MyBehaviourC()

{

// import cannot be used here

 :

}

:

control

{

// import cannot be used here

:

}

}

EXAMPLE 2:
Use of imported definitions and visibility of definitions referenced by them.

module ModuleONE {

modulepar integer ModPar1 := …;

type record RecordType_T1 {

integer
Field1_T1,

:

}

type record RecordType_T2 {

RecordType_T1
Field1_T2,

:

}

const integer MyConst := …;

template RecordType_T2 Template_T2 (RecordType_T1 TempPar_T2):= { // parameterized template

Field1_T2 := …,

:

}

} // end module ModuleONE

module ModuleTWO {

import from ModuleONE {

template Template_T2

}

// Only the names Template_T2 and TempPar_T2 will be visible in ModuleTWO. Please note, that

// the identifier TempPar_T2 can only be used when modifying Template_T2. All information

// necessary for the usage of Template_T2, e.g. for type checking purposes, are imported

// for the referenced definitions RecordType_T1, Field1_T2, etc., but their identifiers are

// not visible in ModuleTWO.

// This means, e.g. it is not possible to use the constant MyConst or to declare a

// variable of type RecordType_T1 or RecordType_T2 in ModuleTWO without explicitly importing

// these types.

import from ModuleONE {

modulepar ModPar2

}

// The module parameter ModPar2 of ModuleONE is imported from ModuleONE and

// can be used like an integer constant

} // end module ModuleTWO

module ModuleTHREE {

import from ModuleONE all;
// imports all definitions from ModuleONE

type port MyPortType {

inout RecordType_T2
// Reference to a type defined in ModuleONE

}

type component MyCompType {

var integer MyComponentVar := ModPar2;

// Reference to a module parameter of ModuleONE

:

}

function MyFunction () return integer {

return MyConst

// Reference to a module constant of ModuleONE

}

testcase MyTestCase (out RecordType_T2 MyPar) runs on MyCompType {

:

MyPort.send(Template_T2); // Sending a template defined in ModuleONE

:

}

} // end ModuleTHREE

module ModuleFOUR {

import from ModuleTHREE {

testcase MyTestCase

}

// Only the name MyTestCase will be visible and usable in ModuleFOUR.

// Type information for RecordType_T2 is imported via ModuleTHREE from ModuleONE and

// Type information for MyCompType is imported from ModuleTHREE. All definitions

// used in the behaviour part of MyTestCase remain hidden for the user of ModuleFOUR.

} // end ModuleFOUR

EXAMPLE 3:
Handling of name clashes.

module MyModuleA {

 :

type bitstring MyTypeA;

import from SomeModuleC {

type
MyTypeA,

// Where MyTypeA is of type character string

MyTypeB

// Where MyTypeB is of type character string

}

 :

control {

 :

var
SomeModuleC.MyTypeA MyVar1 := "Test String"; // Prefix must be used

var MyTypeA MyVar2 := '10110011'B;

 // This is the original MyTypeA

 :

var MyTypeB MyVar3 := "Test String";

 // Prefix need not be used …

var SomeModuleC.MyTypeB MyVar3 := "Test String"; // … but it can be if wished

 :

}

}

NOTE 7:
Definitions with the same name defined in different modules are always assumed to be different, even if the actual definitions in the different modules are identical. For example, importing a type that is already defined locally, even with the same name, would lead to two different types being available in the module.
8.2.3.2
Importing single definitions

Single visible definitions can be imported by referring to the definition kind and the definition name(s). The import of single definitions can be used in combination with imports of groups (see clause 8.2.3.3), with imports of definitions of the same kind (see clause 8.2.3.4), and with imports of import statements (see clause 8.2.3.7).

Syntactical Structure
[Visibility] import from ModuleId "{"

{

(

(type

{ TypeDefIdentifier
[","] }) |

(template
{ TemplateIdentifier
[","] }) |

(const
{ ConstIdentifier

[","] }) |

(testcase
{ TestcaseIdentifier
[","] }) |

(altstep
{ AltstepIdentifier
[","] }) |

(function
{ FunctionIdentifier
[","] }) |

(signature { SignatureIdentifier
[","] }) |

(modulepar { ModuleParIdentifier
[","] })

)

[";"]

}

"}" [";"]

Semantic Description
See clause 8.2.3. Import of an invisible definition shall cause an error.

Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

a) The definition to be imported shall be defined in the module from which it is to be imported and shall be visible to the importing module.

b) See the restrictions given in clause 8.2.3.

Examples

import from MyModuleA {

type MyType1

// imports one type definition from MyModuleA only

}

import from MyModuleB {

type MyType2, Mytype3, MyType4;

// imports three types,

template MyTemplate1;

// imports one template, and

const MyConst1, MyConst2

// imports two constants

}

8.2.3.3
Importing groups

Groups of definitions may be imported. The import of groups can be used in combination with imports of single definitions (see clause 8.2.3.2),with imports of definitions of the same kind (see clause 8.2.3.4), and with imports of import statements (see clause 8.2.3.7).

It is allowed to import sub‑groups (i.e. a group which is defined within another group) directly, i.e. without the groups in which the sub-group is embedded. If the name of a sub-group that should be imported is identical to the name of another sub-group in the same module (see clause Fehler! Verweisquelle konnte nicht gefunden werden.), the dot notation shall be used to identify the sub-group to be imported uniquely.
If some visible definitions of a group are wished not to be imported, their kinds and identifiers shall be listed in the exception list within a pair of curly brackets following the except keyword. The all keyword is also allowed to be used in the exception list; this will exclude all definitions of the same kind from the import statement.

Syntactical Structure
[Visibility] import from ModuleId "{"

{

(group
{ FullGroupIdentifier [except "{" ExceptSpec "}"]
[","] })

[";"]

}

"}" [";"]

Semantic Description
The effect of importing a group is identical to an import statement that lists all visible definitions (including sub‑groups) of this group except of those that are listed in the except specification. See also clause 8.2.3. Import statements contained in the group or in its subgroups are not part of this list, only definitions are.
It is important to point out, that the except statement does not exclude the definitions listed from being imported in general; all statements importing definitions of the same kind can be seen as a shorthand notation for an equivalent list of identifiers of single definitions. The except statement excludes definitions from this single list only.

Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

k) The group to be imported shall be defined in the module from which it is to be imported.

l) See the restrictions given in clause 8.2.3.

Examples

import from MyModule { group MyGroup } // includes all visible definitions from MyGroup

import from MyModule {

group MyGroup except {

type MyType3, MyType5;
// excludes the two types from the import statement,

template all

// excludes all templates defined in MyGroup

// from the import statement

// but imports all other visible definitions of MyGroup

}

}

import from MyModule {

group MyGroup

except { type MyType3 };// imports all visible types of MyGroup except MyType3

type MyType3

// imports MyType3 explicitly

}

8.2.3.4
Importing definitions of the same kind

The all keyword may be used to import all visible definitions of the same kind of a module. The all keyword used with the constant keyword identifies all visible constants declared in the definitions part of the module the import statement refers to. Similarly the all keyword used with the function keyword identifies all visible functions and all visible external functions defined in the module the import statement denotes.

If some visible declarations of a kind are wished to be excluded from the given import statement, their identifiers shall be listed following the except keyword.

The import of visible definitions of the same kind can be used in combination with imports of single visible definitions (see clause 8.2.3.2), with imports of groups (see clause 8.2.3.3), and with imports of import statements (see clause 8.2.3.7).
Syntactical Structure
[Visibility] import from ModuleId "{"

{

(

(type

all [except { TypeDefIdentifier
[","] }]) |

(template
all [except { TemplateIdentifier
[","] }]) |

(const
all [except { ConstIdentifier

[","] }]) |

(testcase
all [except { TestcaseIdentifier
[","] }]) |

(altstep
all [except { AltstepIdentifier
[","] }]) |

(function
all [except { FunctionIdentifier
[","] }]) |

(signature all [except { SignatureIdentifier
[","] }]) |

(modulepar all [except { ModuleParIdentifier
[","] }])

)

[";"]

}

"}" [";"]

Semantic Description
The effect of importing definitions of the same kind is identical to an import statement that lists all visible definitions of that kind except of those that are listed in the except specification. See also clause 8.2.3.
NOTE:
If the list of all visible definitions of that kind except of those that are listed in the except specification is empty, the import statement has no effect. This case does not lead to an error.

Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

a) See the restrictions given in clause 8.2.3.

Examples

import from MyModule {

type all;

// imports all types of MyModule

template all

// imports all templates of MyModule

}

import from MyModule {

type all except MyType3, MyType5;
// imports all types except MyType3 and MyType5

template all

// imports all templates defined in Mymodule

}

8.2.3.5
Importing all definitions of a module

All visible definitions of a module definitions part may be imported using the all keyword next to the module name.

If some visible definitions are wished not to be imported, their kinds and identifiers shall be listed in the exception list within a pair of curly brackets following the except keyword. The all keyword is also allowed to be used in the exception list; this will exclude all visible declarations of the same kind from the import statement.

NOTE 1:
If the list of all visible definitions of a module except of those that are listed in the except specification is empty, the import statement has no effect. This case does not lead to an error.
NOTE 2:
Importing all definitions of a module imports only definitions declared directly in that module, but does not import the import statements of that module (see also clause 8.2.3.7).
Syntactical Structure
[Visibility] import from ModuleId

all

[

{

except "{"

(group
{ FullGroupIdentifier
[","] } | all) |

(type

{ TypeDefIdentifier
[","] } | all) |

(template
{ TemplateIdentifier
[","] } | all) |

(const
{ ConstIdentifier

[","] } | all) |

(testcase
{ TestcaseIdentifier
[","] } | all) |

(altstep
{ AltstepIdentifier
[","] } | all) |

(function
{ FunctionIdentifier
[","] } | all) |

(signature { SignatureIdentifier
[","] } | all) |

(modulepar { ModuleParIdentifier
[","] } | all)

"}"

[";"]

}

]

[";"]

Semantic Description
The effect of importing all visible definitions of a module is identical to an import statement that lists all importable definitions of that module except of those that are listed in the except specification. See also clause 8.2.3.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

m) If all visible definitions of a module are imported by using the all keyword, no other form of import (import of single definitions, import of the same kind, etc.) shall be used for the same import statement.

n) In the set of except statements for an all import, only one except statement per kind of definition (i.e. for a group, type, etc.) is allowed.

Examples

import from MyModule all;
// includes all definitions from MyModule

import from MyModule all except {

type MyType3, MyType5;
// excludes these two types from the import statement and

template all

// excludes all templates declared in MyModule,

// from the import statement

// but imports all other definitions of MyModule

}

8.2.3.6
Import definitions from other TTCN‑3 editions and from non-TTCN‑3 modules

In cases when visible definitions are imported from modules from other TTCN‑3 editions or from other sources than TTCN‑3 modules, the language specification shall be used to denote the language (may be together with a version number) of the source (e.g. module, package, library or even file) from which definitions are imported. It consists of the language keyword and a subsequent textual declaration of the denoted language.

The use of the language specification is optional when importing from a TTCN‑3 module of the same edition as the importing module. The TTCN‑3 language identifiers defined in clause Fehler! Verweisquelle konnte nicht gefunden werden. are to be used. Package identifiers from ES 202 781 [Fehler! Verweisquelle konnte nicht gefunden werden.], ES 202 784 [Fehler! Verweisquelle konnte nicht gefunden werden.], and ES 202 785 [Fehler! Verweisquelle konnte nicht gefunden werden.] can be used in addition. Identifiers for other languages are defined in the language mapping parts of TTCN‑3, i.e. in ES 201 873-7 [Fehler! Verweisquelle konnte nicht gefunden werden.], ES 201 873‑8 [Fehler! Verweisquelle konnte nicht gefunden werden.] and
ES 201 873-9 [Fehler! Verweisquelle konnte nicht gefunden werden.].

When an incompatibility is discovered between the language and/or package identification (including implicit identification by omitting the language specification) and the syntax of the module from which definitions are imported, tools shall provide reasonable effort to resolve the conflict.

Syntactical Structure
[Visibility] import from ModuleIdentifier [LanguageSpec] … [";"]

Semantic Description
TTCN‑3 supports the referencing of elements defined in other TTCN‑3 editions (versioned elements) or other languages (foreign elements) from within TTCN‑3 modules. Such elements can be used in a TTCN‑3 module of a given edition only if they have a TTCN‑3 view in that TTCN‑3 edition. The term TTCN‑3 view can be best explained by considering the case when the definition of a TTCN‑3 element is based on another TTCN‑3 element, the information content of the referenced element shall be available and is used for the new definition. For example, when a template is defined based on a structured type, the identifiers and types of fields of the base type shall be accessible and are used for the template definition. In a similar way, when a base type is a versioned or foreign element it shall provide the same information content as would be required from a TTCN‑3 type declaration. The versioned or foreign element, naturally, may contain more information than required by TTCN‑3. The TTCN‑3 view of a versioned or foreign element means that part of the information carried by that element, which is necessary to use it in TTCN‑3. Obviously, the TTCN‑3 view of a versioned or foreign element may be the full set or a subset of the information content of that element but never a superset. There may be versioned or foreign element without a TTCN‑3 view (zero TTCN‑3 view), i.e. for some reason no TTCN‑3 definition in the given edition could be based on them.

To make declarations of versioned or foreign element visible in TTCN‑3 modules, their names shall be imported just like definitions in other TTCN‑3 modules of the given edition. When imported, only the TTCN‑3 view of the versioned or foreign element will be seen from the importing TTCN‑3 module. There are two main differences between importing TTCN‑3 elements of the same editions and versioned or foreign elements:

· to import from a TTCN‑3 module of another edition of from a non-TTCN‑3 module the import statement shall contain an appropriate language identifier string;

· only versioned or foreign elements with a TTCN‑3 view of a given edition are importable into a TTCN‑3 module of that edition.

Importing can be done automatically using the all directive, in which case all importable objects shall automatically be selected by the testing tool, or done manually by listing names of elements to be imported. Naturally, in the second case only importable elements are allowed in the list.

Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

o) The language specification may only be omitted if the referenced module contains TTCN‑3 notation and the TTCN‑3 version is known.
p) Definitions imported from non-TTCN-3 language sources have by default public visibility provided that no other rules are defined in the respective language mapping (see ETSI ES 201 873-7 [i.5],
ETSI ES 201 873-8 [i.6], or ETSI ES 201 873-9 [i.7], respectively)

q)
Examples

module MyNewModule {

 import from MyOldModule language "TTCN‑3:2003" {

type MyType

 }

}

module MyNewestModule {

 import from MyNewModule { import all } language "TTCN‑3:2003";

 // the language specifications shall be identical, see clause 8.2.3.8

}
NOTE:
The import mechanism is designed to allow the re-use of definitions from other TTCN‑3 editions or from other non-TTCN-3 language sources. The rules for importing definitions from specifications written in other languages, e.g. SDL packages, may follow the TTCN‑3 rules or may have to be defined separately.
8.2.3.7
Importing of import statements from TTCN-3 modules
Visible import statements of TTCN-3 modules can be imported by other TTCN‑3 modules.

Syntactical Structure
[Visibility] import from ModuleIdentifier [LanguageSpec]
 "{" import all [";"] "}" [";"]
Semantic Description
TTCN‑3 supports importing of visible import statements from other TTCN-3 modules. This means that import statements of the module, from which the import statements are imported, are re-imported to the importing module. For example, if module B imports the import statements of module A, everything that is imported by A using import statements visible for module B, is also imported by B. If another module C imports all import statements from B, then C imports all what A is importing – provided that the import statements are visible to modules B and C.

It is not possible to import individual import statements of another module

The import of import statements can be used in combination with imports of single definitions (see clause 8.2.3.2), with imports of groups (see clause 8.2.3.3), and with imports of definitions of the same kind (see clause 8.2.3.4).
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

r) The restrictions given in clause 8.2.3.1 apply.
s) The restrictions given in clause 8.2.3.6 apply.
t) Importing of import statements is only possible from other TTCN-3 modules, i.e. the language specification shall denote a TTCN-3 edition only, not a non-TTCN-3 language.

Examples
EXAMPLE 1: Importing of visible import statements
module A {

type integer T1;

type integer T2;

template T1 t1 := ?;

template T2 t2 := *;

:

}

module B {

public import from A { type T1 }

type charstring T2;

template T1 t1 := (1, 2, 3);

:

}

module C {

public import from B { import all } // imports the import statements only

public import from B { type T2 } // imports the type B.T2

import from A { template all }

:

}

module D {

private import from C { import all } // imports the import statements only

:

}

module E {

import from D { import all }

:

}

// yields the following

// module A knows
// A.T1
(defined)

// A.T2
(defined)

// A.t1
(defined)

// A.t2
(defined)

//
// module B knows
// A.T1
(imported)

// B.T2
(defined)

// B.t1
(defined)

//
// module C knows
// A.T1
(imported from B importing it from A)

// B.T2
(imported)

// A.t1
(imported)

// A.t2
(imported)

//
// module D knows
// A.T1
(imported from C importing it from B importing it from A)

// B.T2
(imported from C importing it from B)

// A.t2 and A.t2 are not imported as their imports are private to C

//
// module E "knows" nothing
// as the imports of D are private and not visible to E
8.2.3.8
Compatibility of language specifications in imports

When importing into a TTCN-3 module, the language specification of the importing module, the language specification of the import statement and the language specification of the source module, where the imported definitions are defined, have to be compatible according to the following rules.

Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

u) A TTCN-3 module of any TTCN-3 edition can import from a non-TTCN-3 language source provided that a TTCN-3 view for the non-TTCN-3 language exists (see clause 8.2.3.6).
v) Definitions or import statements are imported according to the language specification in which the definition or the import statement is defined. If no language specification is given in this module, the language specification of the import statement with which those definitions or import statements are to be imported, is used instead. If the module, within which the definitions or the import statements are defined, and the import statement for these definitions or import statements provide both a language specification, then they shall be identical. If none of the two has a language specification, the language specification has to be known from other sources, which is tool specific.
w) The TTCN-3 language specification in an import statement shall be lower or equal to the TTCN-3 language specification of the importing module, i.e. a TTCN-3 module can only import from earlier or same editions of TTCN-3 but not from later editions.
8.2.5
Visibility of definitions

Top-level module definitions and import statements have a visibility, which can be explicitly set. They are by default public except for imported definitions which are by default private. Group definitions are public only.

Syntactical Structure
[public | friend | private]

Semantic Description
The visibility controls whether a top-level definition or an import statement is importable by another module.

Three visibilities are distinguished:

· A top-level definition or an import statement with public visibility is importable by any other module.

· A top-level definition or an import statement with friend visibility is importable by friend modules only (see clause Fehler! Verweisquelle konnte nicht gefunden werden.).

· A top-level definition or an import statement with private visibility cannot be imported at all.

NOTE:
As specified in restriction e) of clause 8.2.3.1, this means that importable definitions are imported together with all information of referenced definitions that are necessary for the usage of the importable definition, even if the referenced definition is private. Only the identifier of the referenced definition is not visible in the importing TTCN-3 module.

The visibility of groups is always public. The visibility of imported definitions is by default private. All other module definitions are by default public.

The visibility of a top-level definition or an import statement defines their importability by another module. If the top-level definition or the import statement is part of a group, this has no effect on the importability of the module definition. The importability of a top-level definition by another module is summarized in table 2, the importability of import statements in table 3.

Table 2: Visibility and import of module definitions
	Visibility of module definition
	Module definition importable directly by a
non-friend module
	Module definition importable directly by a
friend module
	Module definition importable via group import by a non-friend module
	Module definition importable via group import by a friend module

	public
	yes
	yes
	yes
	yes

	friend
	no
	yes
	no
	yes

	private
	no
	no
	no
	no

Table 3: Visibility and import of import statements
	Visibility of import
	Import imported by a non-friend module
	Import imported by a friend module

	public
	yes
	yes

	friend
	no
	yes

	private
	no
	no

Restrictions
No specific restrictions in addition to the general static rules of TTCN‑3 given in clause 5.

Examples
module MyModuleA {

friend module MyModuleC;

private type integer MyInteger;

// MyInteger is not visible to other modules

friend type charstring MyString;

// MyString is visible to friend modules

public type boolean MyBoolean;

// MyBoolean is visible to all modules
}

module MyModuleB {

import from MyModuleA all;

// MyString and MyInteger are not visible and are not imported

// MyBoolean is imported
}

module MyModuleC {

import from MyModuleA all;

// MyInteger is not visible and is not imported

// MyString and MyBoolean are imported
}

A.1
TTCN‑3 BNF

 AUTONUM ImportDef ::= ImportKeyword ImportFromSpec (AllWithExcepts | ("{" ImportSpec "}"))

:

 AUTONUM ImportSpec ::= {ImportElement [SemiColon]}

 AUTONUM ImportElement ::= ImportGroupSpec |

 ImportTypeDefSpec |

 ImportTemplateSpec |

 ImportConstSpec |

 ImportTestcaseSpec |

 ImportAltstepSpec |

 ImportFunctionSpec |

 ImportSignatureSpec |

 ImportModuleParSpec |

 ImportImportSpec
:

 AUTONUM ImportImportSpec ::= ImportKeyword AllKeyword
:

