Error! No text of specified style in document.
4
Error! No text of specified style in document.

5.2
Scope rules

TTCN‑3 provides nine basic units of scope:

a) module definitions part;

b) control part of a module;

c) component types;

d) functions;

e) altsteps;

f) test cases;

g) statement blocks;

h) templates;

i) user defined named types.

NOTE 1:
Additional scoping rule for groups is given in clause Error! Reference source not found..
NOTE 2:
Additional scoping rule for counters of for loops is given in clause Error! Reference source not found..

NOTE 3:
Statement blocks may include declarations. They may occur as stand-alone statement blocks, embedded in another statement block or within compound statements, e.g. as body of a while loop.
NOTE 4:
Built in TTCN-3 types like integer, charstring, anytype etc. are not scope units, but all named user defined types are scope units, independent of their kinds.
Each unit of scope consists of (optional) declarations. The scope units: control part of a module, functions, test cases, altsteps and statement blocks may additionally specify some form of behaviour by using the TTCN‑3 program statements and operations (see clause Error! Reference source not found.).
Definitions made in the module definitions part but outside of other scope units are globally visible, i.e. may be used elsewhere in the module, including all functions, test cases and altsteps defined within the module and the control part. Identifiers imported from other modules are also globally visible throughout the importing module.

Definitions made in the module control part have local visibility, i.e. can be used within the control part only.
Definitions made in a test component type may be used in a component type extending this component type definition, and in functions, test cases and altsteps referencing that component type or a compatible test component type (see clause Error! Reference source not found.) by a runs on-clause.
Test cases, altsteps and functions are individual scope units without any hierarchical relation between them, i.e. declarations made at the beginning of their body have local visibility and shall only be used in the given test case, altstep or function (e.g. a declaration made in a test case is not visible in a function called by the test case or in an altstep used by the test case).

Stand-alone statement blocks and statements within compound statements, like e.g. if-else, while, do-while, or alt statements may be used within the control part of a module, test cases, altsteps, functions, or may be embedded in other statement blocks or compound statements, e.g. an if-else statement that is used within a while loop.

Statement blocks and embedded statement blocks have a hierarchical relation both to the scope unit including the given statement block and to any embedded statement block. Declarations made within a statement block have local visibility.

The hierarchy of scope units is shown in figure 1. Declarations of a scope unit at a higher hierarchical level are visible in all units at lower levels within the same branch of the hierarchy. Declarations of a scope unit in a lower level of hierarchy are not visible to those units at a higher hierarchical level.

[image: image2.emf]module

control part

statement block

nested

statement block

user defined

named type

testcasewith

runs on-clause

and optional

system-clause

module

definitions part

function with

runs on-clause

altstepwith

runs on-clause

component type

function without

runs on-clause

altstepwithout

runs on-clause

statement block statement block statement block

statement block statement block

nested

statement block

nested

statement block

nested

statement block

nested

statement block

nested

statement block

template

Figure 1: Hierarchy of scope units
Editors’ NOTE: Figure was redraw, started from scratch
EXAMPLE 1:
Local scopes.

module MyModule

{
:

const integer MyConst := 0; // MyConst is visible to MyBehaviourA and MyBehaviourB

:

function MyBehaviourA()

{
:

const integer A := 1;
// The constant A is only visible to MyBehaviourA

:

}

function MyBehaviourB()

{
:

const integer B := 1;
// The constant B is only visible to MyBehaviourB

:

}

}

EXAMPLE 2:
Component type scopes.

type component MyComponentType {

const integer MyConst := 1;

...

}

type component MyExtendedComponentType extends MyComponentType {

var integer MyVar:= 2 * MyConst; // using MyConst of MyComponentType

...

}

5.2.1
Scope of formal parameters

The scope of formal parameters in a parameterized object (e.g. in a function definition) shall be restricted to the definition in which the parameters appear and to the lower levels of scope in the same scope hierarchy. That is they follow the scope rules for local definitions (see clause 5.2).
5.2.2
Uniqueness of identifiers

TTCN‑3 requires uniqueness of identifiers, i.e. all identifiers in the same scope hierarchy shall be distinctive. This means that a declaration in a lower level of scope shall not re-use the same identifier as a declaration in a higher level of scope in the same branch of the scope hierarchy.
The identifier of a module (its module name) or of an imported module belongs to the scope unit of the module and cannot be used as identifier for other definitions inside this module. Identifiers for fields of structured types, enumeration values and groups do not have to be globally unique, however in the case of enumeration values the identifiers shall only be reused for enumeration values within other enumerated types. The rules of identifier uniqueness shall also apply to identifiers of formal parameters.

EXAMPLE 1:
Nested scopes.

module MyModule

{
:

const integer A := 1;

:

function MyBehaviourA()

{
:

const integer A := 1; // Is NOT allowed: clash with global constant A

:

if(…)

{
:

const boolean A := true; // Is NOT allowed: clash with local constant A

:

}

}

}

EXAMPLE 2:
Independent scopes.

// The following IS allowed as the constants are not declared in the same scope hierarchy

// (assuming there is no declaration of A in module header)

function MyBehaviourA()

{
:

const integer A := 1;

:

}

function MyBehaviourB()

{
:

const integer A := 1;

:

}

EXAMPLE 3:
Module scopes.

module MyModuleB {

import from MyModuleA { … }

function MyFunction() {

var integer MyModuleB:= 1; // Is NOT allowed: class with module name

:

}

type boolean MyModuleA; // Is NOT allowed: class with imported module name

}

D.4
Preprocessing macro: __SCOPE__

The __SCOPE__ preprocessing macro denotes the unqualified name of the lowest named basic scope unit in which the macro is used. According to clause 5.2, basic scope units of TTCN-3 are module definitions part, module control part, component types, functions, altsteps, test cases, statement blocks, templates and user defined named types. Statement blocks have no name and therefore, a __SCOPE__ preprocessing macro used in a statement block refers to the next higher named basic scope unit.

A preprocessor or compiler will replace all occurrences of __SCOPE__ with a charstring value which includes:

(a) the module name, if the lowest named scope unit is the module definitions part;
(b) "control", if the lowest named scope unit is the module control part;
(c) a component type name, if the lowest named scope unit is a component type definition;
(d) a test case name, if the lowest named scope unit is a test case definition;
(e) an altstep name, if the lowest named scope is an altstep definition, or;
(f) a function name, if the lowest named scope is a function definition;
(g) a template name, if the lowest named scope is a template definition (local or global);
(h) the type name, if the lowest named scope is a user defined named type definition.

NOTE:
The __SCOPE__ preprocessing macro cannot be used to retrieve the names of other kinds of definitions, like for example names of groups or names of global constants.
Examples
EXAMPLE 1: Using __SCOPE__ in constant and template definitions

module MyModule

{

const charstring MyConst := __SCOPE__;

// MyConst contains "MyModule"

template charstring MyTemplate := __SCOPE__;
// MyTemplate contains "MyTemplate"

type record MyRecord1

{

charstring field11,

charstring field12

}

template MyRecord1 MyTemplate1 (charstring p := __SCOPE__) :=

{

field11 := p,

field12 := __SCOPE__

// field12 contains "MyTemplate1"

}

function MyFunction() {

 var template MyRecord1 v_Myvar1 := MyTemplate1;

 // field11 of MyTemplate1 will contain the default value of parameter p,

 // i.e. "MyTemplate1"

};

}
EXAMPLE 2: Using __SCOPE__ in a structured type scope

type record MyRecord2 {

charstring field21,

charstring field22 ("a", "b", __SCOPE__)

 // list constrained field: a legal values are "a", "b" or "MyRecord2"

}

template MyRecord2 MyTemplate2 := {

field21 := "a",

field22 := "MyRecord2"

// a valid specific value matching

}

template MyRecord2 MyTemplate3 := {

field21 := "a",

field22 := __SCOPE__

 // Causes an error as __SCOPE__ is replaced with "MyTemplate3",

 // which is violating the list constraint of field22

}
EXAMPLE 3: Using __SCOPE__ in an embedded structured type scope

type record MyRecord3 {

charstring field31,

record {

charstring field321 ("a", "b", __SCOPE__)

// list constrained field: a legal value shall be "a", "b" or "MyRecord3"

} field32

}

template MyRecord3 MyTemplate4 :=

{

field31 := "a",

field32 :=

{

field321 := "MyRecord3"

// a valid specific value matching

 }

}

template MyRecord3 MyTemplate5 :=

{

field31 := "a",

field32 :=

{

field321 := __SCOPE__

// Causes and error as __SCOPE__ is replaced with "MyTemplate5",

// which is
 violating the list constraint of field321

}

}

ETSI

_1308126263.ppt

testcase with

runs on-clause

and optional

system-clause

module

definitions part

function with

runs on-clause

altstep with

runs on-clause

module

control part

statement block

embedded

statement block

component type

function without

runs on-clause

altstep without

runs on-clause

statement block

statement block

statement block

statement block

statement block

embedded

statement block

embedded

statement block

embedded

statement block

embedded

statement block

embedded

statement block

structured type

template

_1308741990.ppt

module

control part

statement block

nested

statement block

user defined

named type

testcase with

runs on-clause

and optional

system-clause

module

definitions part

function with

runs on-clause

altstep with

runs on-clause

component type

function without

runs on-clause

altstep without

runs on-clause

statement block

statement block

statement block

statement block

statement block

nested

statement block

nested

statement block

nested

statement block

nested

statement block

nested

statement block

template

