6.2.3
Records and sets of single types

TTCN‑3 supports the specification of records and sets whose elements are all of the same type. These are denoted using the keyword of. These records and sets do not have element identifiers and can be considered similar to an ordered array and an unordered array respectively.

The length keyword followed by a value or a range within brackets and used between the record or set and the of keywords restricts the allowed lengths of the given record of or set of type.

NOTE 1:
A type restriction related to the innermost type is placed after the name of the newly defined type. Note that the innermost type can not be a set of or record of. Type restrictions related to record of or set of types are placed between their record/set and of keywords.

EXAMPLE 1:

type record length(10) of integer MyRecordOfType10; // is a record of exactly 10 integers

type record length(0..10) of integer MyRecordOfType0_10;

// is a record of a maximum of 10 integers

type record length(10..infinity) of integer MyRecordOfType10up;

// record of at least 10 integers

type set of boolean MySetOfType; // is an unlimited set of boolean values

type record length(0..10) of charstring StringArray length(12);

// is a record of a maximum of 10 strings each with exactly 12 characters

type record of record of charstring StringArray length(12);

// is a two-dimensional unlimited array of strings each with exactly 12 characters

type set length(5) of set length(6) of charstring StringArray length(12);

// is an unordered two-dimensional array of the size 5*6 of strings each

// with exactly 12 characters

The value notation for record of and set of can be both the value list notation and the assignment notation (usable to address multiple elements) or an indexed notation (usable to address an individual element), which is the same value notation as for arrays (see clause 6.2.7). There is one exception from this general rule: in the case of defining modified templates, the assignment notation is also allowed to be used (see clause 15.5).

When the value list notation is used, the first value in the list is assigned to the first element, the second list value is assigned to the second element, etc. No empty assignment is allowed (e.g. two commas, the second immediately following the first or only with white space between them). Elements to be left out of the assignment shall be explicitly skipped in the list by use of the not-used-symbol "-".

Indexed value notations can be used on both the right-hand side and left-hand side of assignments. The index of the first element shall be zero and the index value shall not exceed the limitation placed by length subtyping. If the value of the element indicated by the index at the right-hand of an assignment is undefined, this shall cause a semantic or run-time error. If an indexing operator at the left-hand side of an assignment refers to a non-existent element, the value at the right-hand side is assigned to the element and all elements with an index smaller than the actual index and without assigned value are created with an undefined value. Undefined elements are permitted only in transient states (while the value remains invisible). Sending a record of or set of value with undefined elements shall cause a dynamic testcase error.

EXAMPLE 2:

// Given

type record of integer MyRecordOf;

var integer MyVar;

// Using the value list notation

var MyRecordOf MyRecordOfVar := { 0, 1, 2, 3, 4 };

 // The same record of, defined with the assignment notation

var MyRecordOf MyRecordOfVarAssignment := {

[0] := 0,

[1] := 1,

[2] := 2,

[3] := 3,

[4] := 4

};

//Using an indexed notation

MyVar := MyRecordOfVar[0]; // the first element of the "record of" value (integer 0)

 // is assigned to MyVar

// Indexed values are permitted on the left-hand side of assignments as well:

MyRecordOfVar[1] := MyVar; // MyVar is assigned to the second element

 // value of MyRecordOfVar is { 0, 0, 2, 3, 4 }

// The assignment

MyRecordOfVar := { 0, 1, -, 2 };

// will change the value of MyRecordOfVar to{ 0, 1, 2 <unchanged>, 2};

// Note, that the 3rd element would be undefined if had had no previous assigned value.

// The assignment

MyRecordOfVar[6] := 6;

// will change the value of MyRecordOfVar to{ 0, 1, 2 , 2, <undefined>, <undefined>, 6 };

// Note the 5th and 6th elements (with indexes 4 and 5) had no assigned value before this

// last assignment and are therefore undefined.

MyRecordOfVar[4] := 4; MyRecordOfVar[5] := 5;

// will complete MyRecordOfVar to the fully defined value { 0, 1, 2 , 2, 4 , 5 , 6 };

NOTE 2:
The index notation makes it possible e.g. to copy record of values element by element in a for loop. For example, the function below reverses the elements of a record of value:

function reverse(in MyRecordOf src) return MyRecordOf

{

var MyRecordOf dest;

var integer i, srcLength := lengthof (src);

for(i := 0; i < srcLength; i:= i + 1) {

dest[srcLength - 1 - i] := src[i];

}

return dest;

}

Embedded record of and set of types will result in a data structure similar to multidimensional arrays (see clause 6.2.7).

EXAMPLE 3:

// Given

type record of integer MyBasicRecordOfType;

type record of MyBasicRecordOfType
My2DRecordOfType;

// Then, the variable myRecordOfArray will have similar attributes to a two-dimensional array:

var My2DRecordOfType myRecordOfArray;

// and reference to a particular element would look like this

// (value of the second element of the third 'MyBasicRecordOfType' construct)

myRecordOfArray [2][1] := 1;

6.2.3.1
Nested type definitions

TTCN‑3 supports the definition of the aggregated type nested with the record of or set of definition. Both the definition of new structured types (record, set, enumerated, set of and record of) and the specification of subtype constraints are possible.

EXAMPLE:

type record of enumerated { red, green, blue } ColorList;

type record length (10) of record length (10) of integer Matrix;

type set of record { charstring id, charstring val } GenericParameters;

...
7.1.3
Relational operators

The predefined relational operators represent the relations of equality (==), less than (<), greater than (>), non‑equality to (!=), greater than or equal to (>=) and less than or equal to (<=). Operands of equality and non-equality may be of arbitrary but compatible types with the exception of the enumerated type, in which case operands shall be instances of the same type. All other relational operators shall have only operands of type integer (including derivatives of integer), float (including derivations of float) or instances of the same enumerated types. The result type of these operations is boolean.

Two charstring or universal charstring values are equal only, if they have equal lengths and the characters at all positions are the same. For values of bitstring, hexstring or octetstring types, the same equality rule applies with the exception, that fractions which shall equal at all positions are bits, hexadecimal digits or pairs of hexadecimal digits accordingly.

Two record values, set values, record of values or set of values are equal if, and only if, their effective value structures are compatible (see clause 6.3) and the values of all corresponding fields are equal. Record values may also be compared to record of values and set values to set of values. In these cases the same rule applies as for comparing two record or set values.

"All fields" means that optional fields not present in the actual value of a record type shall be taken as an undefined value. Such field can equal only to a missing optional field (also considered to be an undefined value) when compared with a value of another record type or to an element with undefined value when compared with a value of a record of type. This principle also applies when values of two set types or a set and a set of type are compared.

Two values of union types are equal if, and only if, in both values the types of the chosen fields are compatible and the actual values of the chosen fields are equal.

EXAMPLE:

// Given

type
set
SetA
{

integer

a1
optional,

integer

a2
optional,

integer

a3
optional

};

type
set
SetB
{

integer

b1
optional,

integer

b2
optional,

integer

b3
optional

};

type
set
SetC
{

integer

c1
optional,

integer

c2
optional,

};

type
set of integer
SetOf;

type
union
UniD
{

integer

d1,

integer

d2,

};

type
union
UniE
{

integer

e1,

integer

e2,

};

type
union
UniF
{

integer

f1,

integer

f2,

boolean

f3,

};

// And

const
SetA
conSetA1
:=
{ a1 := 0, a2 := omit, a3 := 2 };

// Notice that the order of defining values of the fields does not matter

const
SetB
conSetB1
:=
{ b1 := 0, b3 := 2, b2 := omit };

const
SetB
conSetB2
:=
{ b2 := 0, b3 := 2, b1 := omit };

const
SetC
conSetC1
:=
{ c1 := 0, c2 :=2 };

var
SetOf
varSetOf1
:=
{ 0, -, 2 };

const
SetOf
conSetOf2
:=
{ 0, 2 };

const
UniD
conUniD1
:=
{ d1:= 0 };

const
UniE
conUniE1
:=
{ e1:= 0 };

const
UniE
conUniE2;
:=
{ e2:= 0 };

const
UniF
conUniF1;
:=
{ f1:= 0 };

// Then

conSetA1 == conSetB1;

// returns true

conSetA1 == conSetB2;

// returns false, because neither a1 nor a2 are equal to their counterparts

// (the corresponding element is not omitted)

conSetA1 == conSetC1;

// returns false, because the effective value structures of SetA and SetC are not compatible

conSetA1 == varSetOf1;

// causes test case error as varSetOf1 is not completely initialized

// (2nd element is left uninitialized)

conSetA1 == conSetOf2;

// returns false, as the counterpart of the omitted a2 is 2,

// but the counterpart of a3 is undefined

conSetC1 == conSetOf2;

// returns true

conUniD1 == conUniE1;

// returns true

conUniD1 == conUniE2;

// returns false, as the chosen field e2 is not the counterpart of the field d1 of UniD1

conUniD1 == conUniF1;

// returns false, as the effective value structures of UniD1 and UniF are not compatible

