Error! No text of specified style in document.
1
Error! No text of specified style in document.

5.1
Namespaces and document references

A single XML Schema shall be translated to one ore more TTCN-3 modules, corresponding to schema components that have the same target namespace.

Any XSD include / import statements shall be mapped to equivalent TTCN-3 import statements. An XML Schema including another XML Schema shall be translated to two TTCN-3 modules, the one generated for the including XSD shall importthe another TTCN-3 module, generated for the included XSD and both having the same target namespace.
The module names of the generated TTCN-3 modules shall be produced by applying the naming transformation rules (see clause 5.2.2.1) to the target namespace associated to the given module, if it exists, or to the predefined name "NoTargetNamespace".

As TTCN-3 does not offer a namespace concept, information about namespaces and prefixes (from targetNamespace, elementFormDefault, attributeFormDefault, etc.) shall be preserved not in the TTCN-3 code but in the encoding extensions (internal or external). To allow this, an extension permitting explicit specification of the namespaces and prefixes shall be introduced:

module MyModule
{
:
} with {
encode "XML";
variant "namespace as 'http://www.example.org/' prefix 'ns0'"
}

All types declared in the module shall inherit the namespace declaration of the module. This can be overridden by namespace declarations qualifying fields of declared structures.
EXAMPLE 1:

module MyModule
{

:

type record MyRecordType
{

integer

field1,

charstring

field2
}
with {
variant (field1) "namespace as 'http://www.example.org/example1' prefix 'ns1'";
}

:

} with {
encode "XML";
variant "namespace as 'http://www.example.org/' prefix 'ns0'"
}

// The template
template MyRecordType MyTemplate:=
{

field1:= 3,

field2:= "four"
}

// will be encoded as:

<?xml version="1.0" encoding="UTF-8"?>
<ns0:MyRecordType xmlns:ns0=http://www.example.org/>
< ns1:field1 xmlns:ns1=http://www.example.org/example1>3</ns1:field1>
< ns0:field2>four</ ns0:field2>
</ns0:MyRecordType>

If a module has no namespace declaration, all types and fields of types declared within the module shall be assumed to have no namespace, except when a qualifying statement refers a declared type or field directly.
The importation structure of the TTCN-3 modules shall retain the importation structure of the imported XML schemas. TTCN-3 'import' statements shall import types declared in other modules, and referenced in the current module.
The control namespace (the namespace of the type identification attributes and of the nil identification attribute) shall be specified globally, with an encoding extension attached to the TTCN-3 module:

module MyModule
{

:

} with {
encode "XML";
variant "controlNamespace 'http://www.w3.org/2001/XMLSchema-instance' prefix 'xsi'"
}

Qualifying declarations of the namespace prefixes can be used against templates, allowing re-declaration of namespace prefixes inherited from the referred types.
EXAMPLE 2
template MyRecordType MyTemplate2:=
{
field1:= 3,
field2:= "four"
} with {
encode "XML";
variant (field1) "namespace prefix 'newns1'";

variant (field2) "namespace prefix 'newns0'"
}

// will be encoded as:

<?xml version="1.0" encoding="UTF-8"?>
<newns0:MyRecordType xmlns:newns0=http://www.example.org/>
<newns1:field1 xmlns:newns1=http://www.example.org/example1>3</newns1:field1>
<newns0:field2>four</newns0:field2>
</newns0:MyRecordType>
For receiving templates, wildcards (*,?) are allowed to be used in the prefix declaration.
For sake of clarity, wherever irrelevant, namespaces have been omitted from most of the examples in the present document.

5.2
Name conversion

5.2.1
General

Translation of identifiers (e.g. type or field names) has a critical impact on the usability of conversion results: primarily, it must guarantee TTCN-3 consistency, but, in order to support migration of conversion results from code generated with tools based on ITU-T Recommendation X.694 [4], it must also generate identifiers compatible with that standard. It must also support portability of conversion results (the TTCN-3 code and the encoding instruction set) between TTCN-3 tools of different manufacturers, which is only possible if identifier conversion is standardized.

For different reasons a valid XSD identifier may not be a valid identifier in TTCN-3. For example, it is valid to specify both an attribute and an element of the same name in XSD. When mapped in a naïve fashion, this would result in two different types with the same name in TTCN-3.

A name conversion algorithm has to guarantee that the translated identifier name:
a) is unique within the scope it is to be used;
b) contains only valid characters;
c) is not a TTCN-3 keyword;
d) is not a reserved word ("base" or "content").
The present document specifies the generation of:

e) TTCN-3 type reference names corresponding to the names of model group definitions, top-level element declarations, top-level attribute declarations, top-level complex type definitions, and user-defined top-level simple type definitions;

f) TTCN-3 identifiers corresponding to the names of top-level element declarations, top-level attribute declarations, local element declarations, and local attribute declarations;

g) TTCN-3 identifiers for the mapping of certain simple type definitions with an enumeration facet
(see clause 6.1.5);

h) TTCN-3 type reference names of special type assignments (Generating special ASN.1 type assignments for element declarations, Generating special ASN.1 type assignments for type definitions and Generating special ASN.1 type assignments for element substitution groups); and

i) TTCN-3 identifiers of certain sequence components introduced by the mapping (see clause 20).
All of these TTCN-3 names shall be generated by applying clause 5.2.2 either to the name of the corresponding schema component, or to a member of the value of an enumeration facet, or to a specified character string, as specified in the relevant clauses of the present document.

5.2.2
Identifier name conversion
Names of attribute declarations, element declarations, model group definitions, user-defined top-level simple type definitions, and top-level complex type definitions can be identical to TTCN-3 reserved words or can contain characters not allowed in TTCN-3 identifiers or in TTCN-3 type reference names. In addition, there are cases in which TTCN-3 names are required to be distinct where the names of the corresponding XSD schema components (from which the TTCN-3 names are mapped) are allowed to be identical.

5.2.2.1
Name transformation rules

The following transformations shall be applied, in order, to each character string being mapped to a TTCN-3 name, where each transformation (except the first) shall be applied to the result of the previous transformation:

· the characters " " (SPACE) and "." (FULL STOP) shall all be replaced by a "_" (LOW LINE); and

· any character except "A" to "Z" (LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z), "a" to "z" (LATIN SMALL LETTER A to LATIN SMALL LETTER Z), "0" to "9" (DIGIT ZERO to DIGIT NINE), and "_" (LOW LINE) shall be removed; and

· a sequence of two or more "_" (LOW LINE) characters shall be replaced with a single "_" (LOW LINE); and

· "_" (LOW LINE) characters occurring at the beginning or at the end of the name shall be removed; and

· if a character string that is to be used as a name of a TTCN-3 type or as a type reference name starts with a lower-case letter, the first letter shall be capitalized (converted to upper-case); if it starts with a digit (DIGIT ZERO to DIGIT NINE), it shall be prefixed with an "X" (LATIN CAPITAL LETTER X) character; and

· if a character string that is to be used as an identifier starts with an upper-case letter, the first letter shall be uncapitalized (converted to lower-case); if it starts with a digit (DIGIT ZERO to DIGIT NINE), it shall be prefixed with an "x" (LATIN SMALL LETTER X) character; and

· if a character string that is to be used as a name of a TTCN-3type or as a type reference name is empty, it shall be replaced by "X" (LATIN CAPITAL LETTER X); and

· if a character string that is to be used as an identifier is empty, it shall be replaced by "x" (LATIN SMALL LETTER X).
5.2.2.2
Rules to prevent name clashes
Depending on the kind of name being generated, one of the three following items shall apply.

a)
If the name being generated is the typename of an TTCN-3 type definition and the character string generated by the rules in clause 5.2.2.1 is identical to the name of another TTCN-3 type previously generated in the same TTCN-3 module or in another TTCN-3 module with the same namespace (including absence of a namespace), or is one of the reserved words specified in annex A of ES 201 873‑1 [1] or in
clause 11.27 of ITU-T Recommendation X.680 [3], then a suffix shall be appended to the character string generated according to the above rules. The suffix shall consist of a "_" (LOW LINE) followed by the canonical lexical representation (see W3C XML Schema Part 2 [9], clause 2.3.1) of an integer. This integer shall be the least positive integer such that the new name is different from the name of any other TTCN-3 type previously generated in any of those TTCN-3 modules.
b)
If the name being generated is the identifier of a field of a record, a set or a union type, and the character string generated by the rules in clause 5.2.2.1 is identical to the identifier of a previously generated field identifier of the same type, then a suffix shall be appended to the character string generated by the above rules. The suffix shall consist of a "_" (LOW LINE) followed by the canonical lexical representation (see W3C XML Schema
Part 2 [9], clause 2.3.1) of an integer. This integer shall be the least positive integer such that the new identifier is different from the identifier of any previously generated component of that sequence, set, or choice type.

c)
If the name being generated is the identifier of an enumeration item (see clause 6.2.4 of ES 201 873‑1 [1]) of an enumerated type, and the character string generated by the above rules is identical to the identifier of another enumeration item previously generated in the same enumerated type, then a suffix shall be appended to the character string generated by the above rules. The suffix shall consist of a "_" (LOW LINE) followed by the canonical lexical representation (see W3C XML Schema Part 2 [9], clause 2.3.1) of an integer. This integer shall be the least positive integer such that the new identifier is different from the identifier in any other enumeration item already present in that TTCN-3 enumerated type.

For the name of an TTCN-3 type (or identifier) that is generated by applying clause 5.2.2.1 and this clause to the name of an element declaration, attribute declaration, top-level complex type definition or user-defined top-level simple type definition, if the name (or identifier) generated is different from the corresponding name in the XSD document, a name variant attribute shall be assigned to the TTCN-3 type definition with that type name (or to the field with that identifier) as specified in the items below:
j) If the only difference is the case of the first letter (which is upper case in the type reference name and lower case in the name), then the variant attribute "name as uncapitalized" shall be used.
k) If the only difference is the case of the first letter (which is lower case in the identifier and upper case in the name), then the variant attribute "name as capitalized" shall be applied to the field concerned or the "name all as capitalized" shall be applied to the related type definition (in this case the attribute has effect on all identifiers of all fields but not on the name of the type!).
l) Otherwise, the "name as 'name'" variant attribute shall be used, where name is the corresponding name in the XSD document.

EXAMPLE 1:

//The top-level complex type definition:

<xsd:complexType name="COMPONENTS">

<xsd:sequence>

<xsd:element name="Elem" type="xsd:boolean"/>

<xsd:element name="elem" type="xsd:integer"/>

<xsd:element name="Elem-1" type="xsd:boolean"/>

<xsd:element name="elem-1" type="xsd:integer"/>

</xsd:sequence>

</xsd:complexType>

//is mapped to the TTCN-3 type assignment:

type record COMPONENTS_1 {

boolean elem,

integer elem_1,

boolean elem_1_1,

integer elem_1_2

}

with {
variant "name as 'COMPONENTS'";

variant(elem) "name as capitalized";

variant(elem_1) "name as 'elem'";

variant(elem_1_1) "name as 'Elem-1'";

variant(elem_1_2) "name as 'elem-1'"

}

For an TTCN-3 identifier that is generated by clause 5.2.2.1 and by this clause for the mapping of a simple type definition with an enumeration facet where the identifier generated is different from the corresponding member of the value of the enumeration facet, a variant attribute shall be assigned to the TTCN-3 enumerated type, with qualifying information specifying the identifier of the enumeration item of the enumerated type. One of the two following items shall apply:
m) If the only difference is the case of the first letter (which is lower case in the identifier and upper case in the member of the value of the enumeration facet), then the "text 'TTCN-3 enumeration identifier' as capitalized" variant attribute shall be used.
n) Otherwise, the "text 'TTCN-3 enumeration identifier' as 'member of the value of the enumeration facet'" variant attribute shall be used.

EXAMPLE 2:

//The XSD enumeration facet:

<xsd:simpleType name="state">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Off"/>

<xsd:enumeration value="off"/>

</xsd:restriction>

</xsd:simpleType>

//Is mapped to the TTCN-3 type assignment:

type enumerated State { off, off_1 }

with { variant "name as uncapitalized";

 variant "text 'off' as capitalized";

 variant "text 'off_1' as 'off'"

 }

�Will be changed by CR3308 soon.

ETSI

