7
Expressions

TTCN‑3 allows the specification of expressions using the operators defined in clause 7.1.

Syntactical Structure
SingleExpression |

"{" { (FieldReference ":=" (Expression | "-")) [","] } "}" |
// compound expression

"{" [{ (Expression | "-") [","] }] "}"

// compound expression

Semantic Description
Expressions are built from other (simple) expressions. Functions used in expressions shall be value-returning functions. The result of an expression shall be the value of a specific type and the operators used shall be compatible with the type of the operands.

Compound expressions are used for expressions of array, record, record of and set of types.

Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:
a) Values used in expressions shall be at least partially initialized.

This means also that all fields and elements of structured types referenced in an expression shall contain completely initialized values, while other fields and elements, not used in the expression, may be uninitialized or contain omit.

Examples

(x + y - increment(z))*3

// single expression

{ a:= 1, b:= true }

// compound expression, field expression list

{ 1, true }

// compound expression, value list

7.1
Operators

TTCN‑3 supports a number of predefined operators that may be used in the terms of TTCN‑3 expressions. The predefined operators fall into seven categories:

b) arithmetic operators;

c) list operator;

d) relational operators;

e) logical operators;

f) bitwise operators;

g) shift operators;

h) rotate operators.

Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:
i) Values used in operators shall be completely initialized.

These operators are listed in table 5.

Table 5: List of TTCN‑3 operators

	Category
	Operator
	Symbol or Keyword

	Arithmetic operators
	addition
	+

	
	subtraction
	-

	
	multiplication
	*

	
	division
	/

	
	modulo
	mod

	
	remainder
	rem

	String operators
	concatenation
	&

	Relational operators
	equal
	==

	
	less than
	<

	
	greater than
	>

	
	not equal
	!=

	
	greater than or equal
	>=

	
	less than or equal
	<=

	Logical operators
	logical not
	not

	
	logical and
	and

	
	logical or
	or

	
	logical xor
	xor

	Bitwise operators
	bitwise not
	not4b

	
	bitwise and
	and4b

	
	bitwise or
	or4b

	
	bitwise xor
	xor4b

	Shift operators
	shift left
	<<

	
	shift right
	>>

	Rotate operators
	rotate left
	<@

	
	rotate right
	@>

The precedence of these operators is shown in table 6. Within any row in this table, the listed operators have equal precedence. If more than one operator of equal precedence appears in an expression, the operations are evaluated from left to right. Parentheses may be used to group operands in expressions, in which case a parenthesized expression has the highest precedence for evaluation.

Table 6: Precedence of Operators

	Priority
	Operator type
	Operator

	highest

Lowest
	Unary

Binary

Binary

Unary

Binary

Binary

Binary

Binary

Binary

Binary

Unary

Binary

Binary

Binary
	(…)

+, -

*, /, mod, rem

+, -, &

not4b

and4b

xor4b

or4b

<<, >>, <@, @>

<, >, <=, >=

==, !=

not

and

xor

or

7.1.1
Arithmetic operators

The arithmetic operators represent the operations of addition, subtraction, multiplication, division, modulo and remainder. Operands of these operators shall be of type integer (including derivations of integer) or float (including derivations of float), except for mod and rem which shall be used with integer (including derivations of integer) types only.

With integer types, the result type of arithmetic operations is integer. With float types, the result type of arithmetic operations is float.

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of using the minus operator is the negative value of the operand if it was positive and vice versa.

The result of performing the division operation (/) on two:

j) integer values gives the whole integer part of the value resulting from dividing the first integer by the second (i.e. fractions are discarded);

k) float values gives the float value resulting from dividing the first float by the second (i.e. fractions are not discarded).

The operators rem and mod compute on operands of type integer and have a result of type integer. The operations x rem y and x mod y compute the rest that remains from an integer division of x by y. Therefore, they are only defined for non-zero operands y. For positive x and y, both x rem y and x mod y have the same result but for negative arguments they differ.

Formally, mod and rem are defined as follows:

x rem y = x - y * (x/y)

x mod y
= x rem |y|

when
x >= 0

= 0

when
x < 0
and
x rem |y| = 0

= |y| + x rem |y|

when
x < 0
and
x rem |y| < 0

Table 7 illustrates the difference between the mod and rem operator:

Table 7: Effect of mod and rem operator

	x
	-3
	-2
	-1
	0
	1
	2
	3

	x mod 3
	0
	1
	2
	0
	1
	2
	0

	x rem 3
	0
	-2
	-1
	0
	1
	2
	0

7.1.2
List operator

The predefined list operator (&) performs concatenation of values of compatible string types, record of, set of, or array. The operation is a simple concatenation from left to right. No form of arithmetic addition is implied. The result type is the root type of the operands.

EXAMPLE:

'1111'B & '0000'B & '1111'B gives '111100001111'B

7.1.3
Relational operators

The predefined relational operators represent the relations of equality (==), less than (<), greater than (>), non‑equality to (!=), greater than or equal to (>=) and less than or equal to (<=). Operands of equality and non-equality may be of arbitrary but compatible types with the exception of the enumerated type, in which case operands shall be instances of the same type. All other relational operators shall have only operands of type integer (including derivatives of integer), float (including derivations of float) or instances of the same enumerated types. The result type of these operations is boolean.

Two charstring or universal charstring values are equal only, if they have equal lengths and the characters at all positions are the same. For values of bitstring, hexstring or octetstring types, the same equality rule applies with the exception, that fractions which shall equal at all positions are bits, hexadecimal digits or pairs of hexadecimal digits accordingly.

Two record values, set values, record of values or set of values are equal if, and only if, their effective value structures are compatible (see clause 6.3) and the values of all corresponding fields are equal. Record values may also be compared to record of values and set values to set of values. In these cases the same rule applies as for comparing two record or set values.

"All fields" means that optional fields not present in the actual value of a record type shall be taken as an undefined value. Such field can equal only to a missing optional field (also considered to be an undefined value) when compared with a value of another record type or to an element with undefined value when compared with a value of a record of type. This principle also applies when values of two set types or a set and a set of type are compared.

Two values of union types are equal if, and only if, in both values the types of the chosen fields are compatible and the actual values of the chosen fields are equal.

EXAMPLE:

// Given

type
set
SetA
{

integer

a1
optional,

integer

a2
optional,

integer

a3
optional

};

type
set
SetB
{

integer

b1
optional,

integer

b2
optional,

integer

b3
optional

};

type
set
SetC
{

integer

c1
optional,

integer

c2
optional,

};

type
set of integer
SetOf;

type
union
UniD
{

integer

d1,

integer

d2,

};

type
union
UniE
{

integer

e1,

integer

e2,

};

type
union
UniF
{

integer

f1,

integer

f2,

boolean

f3,

};

// And

const
SetA
conSetA1
:=
{ a1 := 0, a2 := omit, a3 := 2 };

// Notice that the order of defining values of the fields does not matter

const
SetB
conSetB1
:=
{ b1 := 0, b3 := 2, b2 := omit };

const
SetB
conSetB2
:=
{ b2 := 0, b3 := 2, b1 := omit };

const
SetC
conSetC1
:=
{ c1 := 0, c2 :=2 };

const
SetOf
conSetOf1
:=
{ 0, omit, 2 };

const
SetOf
conSetOf2
:=
{ 0, 2 };

const
UniD
conUniD1
:=
{ d1:= 0 };

const
UniE
conUniE1
:=
{ e1:= 0 };

const
UniE
conUniE2;
:=
{ e2:= 0 };

const
UniF
conUniF1;
:=
{ f1:= 0 };

// Then

conSetA1 == conSetB1;

// returns true

conSetA1 == conSetB2;

// returns false, because neither a1 nor a2 are equal to their counterparts

// (the corresponding element is not omitted)

conSetA1 == conSetC1;

// returns false, because the effective value structures of SetA and SetC are not compatible

conSetA1 == conSetOf1;

// returns true

conSetA1 == conSetOf2;

// returns false, as the counterpart of the omitted a2 is 2,

// but the counterpart of a3 is undefined

conSetC1 == conSetOf2;

// returns true

conUniD1 == conUniE1;

// returns true

conUniD1 == conUniE2;

// returns false, as the chosen field e2 is not the counterpart of the field d1 of UniD1

conUniD1 == conUniF1;

// returns false, as the effective value structures of UniD1 and UniF are not compatible

7.1.4
Logical operators

The predefined boolean operators perform the operations of negation, logical and, logical or and logical xor. Their operands shall be of type boolean. The result type of logical operations is boolean.

The logical not is the unary operator that returns the value true if its operand was of value false and returns the value false if the operand was of value true.

The logical and returns the value true if both its operands are true; otherwise it returns the value false.

The logical or returns the value true if at least one of its operands is true; it returns the value false only if both operands are false.

The logical xor returns the value true if one of its operands is true; it returns the value false if both operands are false or if both operands are true.

Short circuit evaluation for boolean expressions is used, i.e. the evaluation of operands of logical operators is stopped once the overall result is known: in the case of the and operator, if the left argument evaluates to false, then the right argument is not evaluated and the whole expression evaluates to false. In the case of the or operator, if the left argument evaluates to true, then the right argument is not evaluated and the whole expression evaluates to true.

7.1.5
Bitwise operators

The predefined bitwise operators perform the operations of bitwise not, bitwise and, bitwise or and bitwise xor. These operators are known as not4b, and4b, or4b and xor4b respectively.
NOTE:
To be read as "not for bit", "and for bit" etc.
Their operands shall be of type bitstring, hexstring or octetstring. In the case of and4b, or4b and xor4b the operands shall be of compatible types. The result type of the bitwise operators shall be the root type of the operands.

The bitwise not4b unary operator inverts the individual bit values of its operand. For each bit in the operand a 1 bit is set to 0 and a 0 bit is set to 1. That is:

not4b '1'B gives '0'B

not4b '0'B gives '1'B

EXAMPLE 1:

not4b '1010'B gives '0101'B

not4b '1A5'H gives 'E5A'H

not4b '01A5'O gives 'FE5A'O

The bitwise and4b operator accepts two operands of equal length. For each corresponding bit position, the resulting value is a 1 if both bits are set to 1, otherwise the value for the resulting bit is 0. That is:

'1'B and4b '1'B gives '1'B

'1'B and4b '0'B gives '0'B

'0'B and4b '1'B gives '0'B

'0'B and4b '0'B gives '0'B

EXAMPLE 2:

'1001'B and4b '0101'B gives '0001'B

'B'H and4b '5'H gives '1'H

'FB'O and4b '15'O gives '11'O

The bitwise or4b operator accepts two operands of equal length. For each corresponding bit position, the resulting value is 0 if both bits are set to 0, otherwise the value for the resulting bit is 1. That is:

'1'B or4b '1'B gives '1'B

'1'B or4b '0'B gives '1'B

'0'B or4b '1'B gives '1'B

'0'B or4b '0'B gives '0'B

EXAMPLE 3:

'1001'B or4b '0101'B gives '1101'B

'9'H or4b '5'H gives 'D'H

'A9'O or4b 'F5'O gives 'FD'O

The bitwise xor4b operator accepts two operands of equal length. For each corresponding bit position, the resulting value is 0 if both bits are set to 0 or if both bits are set to 1, otherwise the value for the resulting bit is 1. That is:

'1'B xor4b '1'B gives '0'B

'0'B xor4b '0'B gives '0'B

'0'B xor4b '1'B gives '1'B

'1'B xor4b '0'B gives '1'B

EXAMPLE 4:

'1001'B xor4b '0101'B gives '1100'B

'9'H xor4b '5'H gives 'C'H

'39'O xor4b '15'O gives '2C'O

7.1.6
Shift operators

The predefined shift operators perform the shift left (<<) and shift right (>>)operations. Their left-hand operand shall be of type bitstring, hexstring or octetstring. Their right-hand operand shall be of type integer. The result type of these operators shall be the same as that of the left operand.

The shift operators behave differently based upon the type of their left-hand operand. If the type of the left-hand operand is:

a)
bitstring then the shift unit applied is 1 bit;

b)
hexstring then the shift unit applied is 1 hexadecimal digit;

c)
octetstring then the shift unit applied is 1 octet.

The shift left (<<) operator accepts two operands. It shifts the left-hand operand by the number of shift units to the left as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each shift unit shifted to the left, a zero ('0'B, '0'H, or '00'O determined according to the type of the left​-hand operand) is inserted from the right-hand side of the left operand.

EXAMPLE 1:

'111001'B << 2 gives '100100'B

'12345'H << 2 gives '34500'H

'1122334455'O << (1+1) gives '3344550000'O

The shift right (>>)operator accepts two operands. It shifts the left-hand operand by the number of shift units to the right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each shift unit shifted to the right, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand) is inserted from the left-hand side of the left operand.

EXAMPLE 2:

'111001'B >> 2 gives '001110'B

'12345'H >> 2 gives '00123'H

'1122334455'O >> (1+1) gives '0000112233'O

7.1.7
Rotate operators

The predefined rotate operators perform the rotate left (<@) and rotate right (@>) operators. Their left-hand operand shall be of type bitstring, hexstring, octetstring, charstring, universal charstring, record of, set of, or array. Their right-hand operand shall be of type integer. The result type of these operators shall be the same as that of the left operand.

The rotate operators behave differently based upon the type of their left-hand operand. If the type of the left-hand operand is:

l) bitstring then the rotate unit applied is 1 bit;

m) hexstring then the rotate unit applied is 1 hexadecimal digit;

n) octetstring then the rotate unit applied is 1 octet;

o) charstring or universal charstring then the rotate unit applied is one character.

p) record of, set of, or array then the rotate unit applied is one element.

The rotate left (<@) operator accepts two operands. It rotates the left-hand operand by the number of shift units to the left as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements) are re‑inserted into the left-hand operand from its right-hand side.

EXAMPLE 1:

'101001'B <@ 2 gives '100110'B

'12345'H <@ 2 gives '34512'H

'1122334455'O <@ (1+2) gives '4455112233'O

"abcdefg" <@ 3 gives "defgabc"

The rotate right (@>) operator accepts two operands. It rotates the left-hand operand by the number of shift units to the right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements) are re‑inserted into the left-hand operand from its left-hand side.

EXAMPLE 2:

'100001'B @> 2 gives '011000'B

'12345'H @> 2 gives '45123'H

'1122334455'O @> (1+2) gives '3344551122'O

"abcdefg" @> 3 gives "efgabcd"

7.2
Field references and list elements
Within expressions, fields of record and set types are referenced with the dot notation ".field". Elements of record of, set of, array and string types are referenced with the index notation "[index]". Dot and brackets have the same binding power. Field references and list elements are evaluated from left to right.
…
19.1
Assignments

Values may be assigned to variables. This is indicated by the symbol ":=".
Syntactical Structure
VariableRef ":=" (Expression | TemplateBody)

Semantic Description
During execution of an assignment, the right-hand side of the assignment shall evaluate to a value or template. The effect of an assignment is to bind the variable to the value of the expression or to a template. The expression shall contain no unbound variables. All assignments are processed in the order in which they appear, that is left to right processing Assignments are processed from left to right, i.e the left-hand-side is evaluated before the right-hand-side. The evaluations obey the operator precedence defined in Table 6. The right-hand-side is evaluated completely before the resulting value or template is bound to the evaluated left-hand side of the assignment. Whenever assignments are used within the right-hand-side of an assignment (due to assignment notation), these rules apply recursively.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:
q) The right‑hand side of an assignment shall evaluate to a value or template, which is type compatible with the variable at the left-hand side of the assignment.

r) When the right‑hand side of the assignment evaluates to a template (global or local template, in-line template or template variable), the variable at the left hand side shall be a template variable.

Examples

MyVariable := (x + y - increment(z))*3;

