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Foreword

This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).

The present document is part 4 of a multi-part deliverable. Full details of the entire series can be found in part 1 [1].

1
Scope

The present document defines the operational semantics of TTCN-3. The present document is based on the TTCN-3 core language defined in ES 201 873-1 [1].

2
References

5
Structure of the present document

7
Replacement of short forms

Short forms have to be expanded by the corresponding complete definitions on a textual level before this operational semantics can be used for the explanation of TTCN-3 behaviour.

TTCN-3 short forms are:

· lists of module parameter, constant and variable declarations of the same type and lists of timer declarations;

· stand-alone receiving operations;

· stand-alone altsteps calls;

· trigger operations;

· missing return and stop statements at the end of function and test case definitions;

· missing stop execution statements;

· interleave statements;

· select-case statements;

· break and continue statements, and
· disconnect and unmap operations without parameters.
· default values of missing actual parameters
In addition to the handling of short forms, the operational semantics requires a special handling for module parameters, global constants, i.e. constants that are defined in the module definitions part, and pre-processing macros. All references to module parameters, global constants and pre-processing macros shall be replaced by concrete values. This means, it is assumed that the value of module parameters, global constants and pre-processing macros can be determined before the operational semantics becomes relevant.

NOTE 1:
The handling of module parameters and global constants in the operational semantics will be different from their handling in a TTCN-3 compiler. The operational semantics describes the meaning of TTCN-3 behaviour and is not a guideline for the implementation of a TTCN-3 compiler.

NOTE 2:
The operational semantics handles parameters of and local constants in test components, test cases, functions and module control like variables. The wrong usage of local constants or in, out and inout parameters has to be checked statically.

7.1
Order of replacement steps

The textual replacements of short forms, global constants and module parameters have to be done in the following order:

1) replacement of lists of module parameter, constant, variable and timer declarations with individual declarations;

2) replacement of global constants and module parameters by concrete values;

3) replacement of all select-case statements by equivalent nested if-else statements;

4) embedding stand-alone receiving operations into alt statements;

5) embedding stand-alone altstep calls into alt statements;

6) expansion of interleave statements;

7) replacement of all trigger operations by equivalent receive operations and repeat statements;

8) adding return at the end of functions without return statement, adding self.stop operations at the end of testcase definitions without a stop statement;
9) adding stop at the end a module control part without stop statement;
10) expansion of break statements;
11) expansion of continue statements; and
12) adding default parameters to disconnect and unmap operations without parameters; and
13) adding default values of parameters. 
NOTE:
Without keeping this order of replacement steps, the result of the replacements would not represent the defined behaviour.

7.2
Replacement of global constants and module parameters

7.7
Replacement of select-case statements

7.11
Adding default values of parameters

Formal parameters may have default values. If no actual parameter is provided in a specific invocation, then the default value is added to the actual parameter list. If list notation has been used for the actual parameter list, then the default value is inserted according to the order in the formal parameter list. If assignment notation has been used for the actual parameter list, then the default values are appended to the actual parameters, the order among the default values corresponds to their order in the formal parameter list.
EXAMPLE:



function f_comp (in integer p_int1, in integer p_int2 := 3) return integer {


  var integer v := p_int1 + p_int2;


  :


  return v;


}


// Each occurrence of 

f_comp(1)

 
// shall be expanded to 
 
f_comp(1, 3);



// Each occurrence of 

f_comp(p_int1 := 1)

 
// shall be expanded to 
 
f_comp(p_int1 := 1, p_int2 := 3);

8
Flow graph semantics of TTCN-3
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