[image: image1.wmf]

TD <>
ETSI ES 201 873-4 V3.4.1 (2008-09)
ETSI Standard
Methods for Testing and Specification (MTS);

The Testing and Test Control Notation version 3;

Part 4: TTCN-3 Operational Semantics

Reference

RES/MTS-00108-4 T3 ed341 OS
Keywords

interoperability, methodology, MTS, testing, TTCN
ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2008.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM, TIPHONTM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Contents
7Intellectual Property Rights

Foreword
7
1
Scope
8
2
References
8
2.1
Normative references
8
2.2
Informative references
8
3
Definitions and abbreviations
9
3.1
Definitions
9
3.2
Abbreviations
9
4
Introduction
9
5
Structure of the present document
9
6
Restrictions
10
7
Replacement of short forms
10
7.1
Order of replacement steps
11
7.2
Replacement of global constants and module parameters
11
7.3
Embedding single receiving operations into alt statements
11
7.4
Embedding stand-alone altstep calls into alt statements
12
7.5
Replacement of interleave statements
12
7.6
Replacement of trigger operations
25
7.7
Replacement of select-case statements
25
7.8
Replacement of break statements
26
7.9
Replacement of continue statements
27
7.10
Adding default parameters to disconnect and unmap operations without parameters
27
8
Flow graph semantics of TTCN-3
28
8.1
Flow graphs
28
8.1.1
Flow graph frame
28
8.1.2
Flow graph nodes
28
8.1.2.1
Start nodes
28
8.1.2.2
End nodes
29
8.1.2.3
Basic nodes
29
8.1.2.4
Reference nodes
29
8.1.2.4.1
OR combination of reference nodes
29
8.1.2.4.2
Multiple occurrences of reference nodes
30
8.1.3
Flow lines
30
8.1.4
Flow graph segments
31
8.1.5
Comments
32
8.1.6
Handling of flow graph descriptions
32
8.2
Flow graph representation of TTCN-3 behaviour
32
8.2.1
Flow graph construction procedure
33
8.2.2
Flow graph representation of module control
33
8.2.3
Flow graph representation of test cases
34
8.2.4
Flow graph representation of functions
35
8.2.5
Flow graph representation of altsteps
36
8.2.6
Flow graph representation of component type definitions
37
8.2.7
Retrieval of start nodes of flow graphs
38
8.3
State definitions for TTCN-3 modules
38
8.3.1
Module state
38
8.3.1.1
Accessing the module state
39
8.3.2
Entity states
40
8.3.2.1
Accessing entity states
41
8.3.2.2
Data state and variable binding
43
8.3.2.3
Accessing data states
43
8.3.2.4
Timer state and timer binding
44
8.3.2.5
Accessing timer states
45
8.3.2.6
Port references and port binding
46
8.3.2.7
Accessing port references
47
8.3.3
Port states
47
8.3.3.1
Handling of connections among ports
48
8.3.3.2
Handling of port states
48
8.3.4
General functions for the handling of module states
49
8.4
Messages, procedure calls, replies and exceptions
50
8.4.1
Messages
50
8.4.2
Procedure calls and replies
50
8.4.3
Exceptions
51
8.4.4
Construction of messages, procedure calls, replies and exceptions
51
8.4.5
Matching of messages, procedure calls, replies and exceptions
51
8.4.6
Retrieval of information from received items
52
8.5
Call records for functions, altsteps and test cases
52
8.5.1
Handling of call records
52
8.6
The evaluation procedure for a TTCN-3 module
53
8.6.1
Evaluation phases
53
8.6.1.1
Phase I: Initialization
53
8.6.1.2
Phase II: Update
54
8.6.1.3
Phase III: Selection
54
8.6.1.4
Phase IV: Execution
54
8.6.2
Global functions
54
9
Flow graph segments for TTCN-3 constructs
55
9.1
Action statement
55
9.2
Activate statement
56
9.2a
Alive component operation
57
9.2a.1
Flow graph segment <alive-comp-act>
58
9.2a.2
Flow graph segment <alive-comp-snap>
59
9.3
Alt statement
59
9.3.1
Flow graph segment <take-snapshot>
60
9.3.2
Flow graph segment <receiving-branch>
61
9.3.3
Flow graph segment <altstep-call-branch>
62
9.3.4
Flow graph segment <else-branch>
63
9.3.5
Flow graph segment <default-evocation>
64
9.4
Altstep call
65
9.5
Assignment statement
65
9.6
Call operation
65
9.6.1
Flow graph segment <nb-call-with-one-receiver>
67
9.6.1a
Flow graph segment <nb-call-with-multiple-receivers>
67
9.6.2
Flow graph segment <nb-call-without-receiver>
69
9.6.3
Flow graph segment <b-call-without-duration>
69
9.6.4
Flow graph segment <b-call-with-duration>
70
9.6.5
Flow graph segment <call-reception-part>
71
9.6.6
Flow graph segment <catch-timeout-exception>
72
9.7
Catch operation
72
9.8
Check operation
73
9.8.1
Flow graph segment <check-with-sender>
74
9.8.2
Flow graph segment <check-without-sender>
75
9.9
Clear port operation
76
9.10
Connect operation
76
9.11
Constant definition
77
9.12
Create operation
78
9.13
Deactivate statement
79
9.13.1
Flow graph segment <deactivate-one-default>
80
9.13.2
Flow graph segment <deactivate-all-defaults>
80
9.14
Disconnect operation
81
9.14.1
Flow graph segment <disconnect-one-par-pair>
81
9.14.2
Flow graph segment <disconnect-all>
83
9.14.3
Flow graph segment <disconnect-comp>
84
9.14.4
Flow graph segment <disconnect-port>
85
9.14.5
Flow graph segment <disconnect-two-par-pairs>
85
9.15
Do-while statement
86
9.16
Done component operation
87
9.17
Execute statement
89
9.17.1
Flow graph segment <execute-without-timeout>
90
9.17.2
Flow graph segment <execute-timeout>
91
9.17.3
Flow graph segment <dynamic-error>
92
9.18
Expression
92
9.18.1
Flow graph segment <lit-value>
93
9.18.2
Flow graph segment <var-value>
93
9.18.3
Flow graph segment <func-op-call>
94
9.18.4
Flow graph segment <operator-appl>
94
9.19
Flow graph segment <finalize-component-init>
95
9.20
Flow graph segment <init-component-scope>
95
9.20a
Flow graph segment <init-scope-with-runs-on>
96
9.20b
Flow graph segment <init-scope-without-runs-on>
96
9.21
Flow graph segment <parameter-handling>
97
9.22
Flow graph segment <statement-block>
97
9.23
For statement
98
9.24
Function call
99
9.24.1
Flow graph segment <value-par-calculation>
101
9.24.2
Flow graph segment <ref-par-var-calc>
101
9.24.3
Flow graph segment <ref-par-timer-calc>
102
9.24.3a
Flow graph segment <ref-par-port-calc>
102
9.24.4
Flow graph segment <user-def-func-call>
103
9.24.5
Flow graph segment <predef-ext-func-call>
104
9.25
Getcall operation
104
9.26
Getreply operation
104
9.27
Getverdict operation
105
9.28
Goto statement
105
9.29
If-else statement
106
9.29a
Kill component operation
106
9.29a.1
Flow graph segment <kill-mtc>
108
9.29a.2
Flow graph segment <kill-component>
109
9.29a.3
Flow graph segment <kill-all-comp>
110
9.29b
Kill execution statement
110
9.29b.1
Flow graph segment <kill-control>
111
9.29c
Killed component operation
112
9.30
Label statement
113
9.31
Log statement
113
9.32
Map operation
114
9.33
Mtc operation
114
9.34
Port declaration
115
9.35
Raise operation
115
9.35.1
Flow graph segment <raise-with-one-receiver-op>
116
9.35.1a
Flow graph segment <raise-with-multiple-receivers-op>
116
9.35.2
Flow graph segment <raise-without-receiver-op>
118
9.36
Read timer operation
119
9.37
Receive operation
120
9.37.1
Flow graph segment <receive-with-sender>
121
9.37.2
Flow graph segment <receive-without-sender>
122
9.37.3
Flow graph segment <receive-assignment>
123
9.38
Repeat statement
123
9.39
Reply operation
124
9.39.1
Flow graph segment <reply-with-one-receiver-op>
125
9.39.1a
Flow graph segment <reply-with-multiple-receivers-op>
125
9.39.2
Flow graph segment <reply-without-receiver-op>
127
9.40
Return statement
127
9.40.1
Flow graph segment <return-with-value>
129
9.40.2
Flow graph segment <return-without-value>
130
9.41
Running component operation
131
9.41.1
Flow graph segment <running-comp-act>
132
9.41.2
Flow graph segment <running-comp-snap>
133
9.42
Running timer operation
134
9.43
Self operation
135
9.44
Send operation
135
9.44.1
Flow graph segment <send-with-one-receiver-op>
136
9.44.1a
Flow graph segment <send-with-multiple-receivers-op>
136
9.44.2
Flow graph segment <send-without-receiver-op>
138
9.45
Setverdict operation
138
9.46
Start component operation
139
9.47
Start port operation
141
9.48
Start timer operation
141
9.48.1
Flow graph segment <start-timer-op-default>
142
9.48.2
Flow graph segment <start-timer-op-duration>
143
9.49
Stop component operation
143
9.49.1
Void
145
9.49.2
Flow graph segment <stop-alive-component>
145
9.49.3
Flow graph segment <stop-all-comp>
146
9.50
Stop execution statement
147
9.50.1
Void
148
9.51
Stop port operation
148
9.52
Stop timer operation
149
9.53
System operation
149
9.54
Timer declaration
150
9.54.1
Flow graph segment <timer-decl-default>
150
9.54.2
Flow graph segment <timer-decl-no-def>
151
9.55
Timeout timer operation
152
9.56
Unmap operation
153
9.56.1
Flow graph segment <unmap-all>
155
9.56.2
Flow graph segment <unmap-comp>
156
9.56.3
Flow graph segment <unmap-port>
157
9.57
Variable declaration
157
9.57.1
Flow graph segment <var-declaration-init>
158
9.57.2
Flow graph segment <var-declaration-undef>
159
9.58
While statement
159
10
Lists of operational semantic components
160
10.1
Functions and states
160
10.2
Special keywords
161
10.3
Flow graphs of TTCN-3 behaviour descriptions
162
10.4
Flow graph segments
162
History
165

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).

The present document is part 4 of a multi-part deliverable. Full details of the entire series can be found in part 1 [1].

1
Scope

The present document defines the operational semantics of TTCN-3. The present document is based on the TTCN-3 core language defined in ES 201 873-1 [1].

2
References

5
Structure of the present document

7
Replacement of short forms

Short forms have to be expanded by the corresponding complete definitions on a textual level before this operational semantics can be used for the explanation of TTCN-3 behaviour.

TTCN-3 short forms are:

· lists of module parameter, constant and variable declarations of the same type and lists of timer declarations;

· stand-alone receiving operations;

· stand-alone altsteps calls;

· trigger operations;

· missing return and stop statements at the end of function and test case definitions;

· missing stop execution statements;

· interleave statements;

· select-case statements;

· break and continue statements, and
· disconnect and unmap operations without parameters.
· default values of missing actual parameters
In addition to the handling of short forms, the operational semantics requires a special handling for module parameters, global constants, i.e. constants that are defined in the module definitions part, and pre-processing macros. All references to module parameters, global constants and pre-processing macros shall be replaced by concrete values. This means, it is assumed that the value of module parameters, global constants and pre-processing macros can be determined before the operational semantics becomes relevant.

NOTE 1:
The handling of module parameters and global constants in the operational semantics will be different from their handling in a TTCN-3 compiler. The operational semantics describes the meaning of TTCN-3 behaviour and is not a guideline for the implementation of a TTCN-3 compiler.

NOTE 2:
The operational semantics handles parameters of and local constants in test components, test cases, functions and module control like variables. The wrong usage of local constants or in, out and inout parameters has to be checked statically.

7.1
Order of replacement steps

The textual replacements of short forms, global constants and module parameters have to be done in the following order:

1) replacement of lists of module parameter, constant, variable and timer declarations with individual declarations;

2) replacement of global constants and module parameters by concrete values;

3) replacement of all select-case statements by equivalent nested if-else statements;

4) embedding stand-alone receiving operations into alt statements;

5) embedding stand-alone altstep calls into alt statements;

6) expansion of interleave statements;

7) replacement of all trigger operations by equivalent receive operations and repeat statements;

8) adding return at the end of functions without return statement, adding self.stop operations at the end of testcase definitions without a stop statement;
9) adding stop at the end a module control part without stop statement;
10) expansion of break statements;
11) expansion of continue statements; and
12) adding default parameters to disconnect and unmap operations without parameters; and
13) adding default values of parameters.
NOTE:
Without keeping this order of replacement steps, the result of the replacements would not represent the defined behaviour.

7.2
Replacement of global constants and module parameters

7.7
Replacement of select-case statements

7.11
Adding default values of parameters

Formal parameters may have default values. If no actual parameter is provided in a specific invocation, then the default value is added to the actual parameter list. If list notation has been used for the actual parameter list, then the default value is inserted according to the order in the formal parameter list. If assignment notation has been used for the actual parameter list, then the default values are appended to the actual parameters, the order among the default values corresponds to their order in the formal parameter list.
EXAMPLE:

function f_comp (in integer p_int1, in integer p_int2 := 3) return integer {

 var integer v := p_int1 + p_int2;

 :

 return v;

}

// Each occurrence of

f_comp(1)

// shall be expanded to

f_comp(1, 3);

// Each occurrence of

f_comp(p_int1 := 1)

// shall be expanded to

f_comp(p_int1 := 1, p_int2 := 3);

8
Flow graph semantics of TTCN-3

[image: image1.wmf]_1065009619.doc

