Error! No text of specified style in document.
3
Error! No text of specified style in document.

B.1.5
Matching character pattern

Character patterns can be used in templates to define the format of a required character string to be received. Character patterns can be used to match charstring and universal charstring values. In addition to literal characters, character patterns allow the use of meta-characters (e.g. ? and * within a character pattern means matching any character and any number of any character respectively).

EXAMPLE 1:

template charstring MyTemplate:= pattern "ab??xyz*0";

This template would match any character string that consists of the characters "ab", followed by any two characters, followed by the characters "xyz", followed by any number of any characters (including any number of "0"-s) before the closing character "0".

If it is required to interpret any metacharacter literally it should be preceded with the metacharacter "\".

EXAMPLE 2:

template charstring MyTemplate:= pattern "ab?\?xyz*";

This template would match any character string which consists of the characters "ab", followed by any character, followed by the characters "?xyz", followed by any number of any characters.

The list of meta characters for TTCN‑3 patterns is shown in table B.1. Metacharacters shall not contain whitespaces except a whilespace preceded by a newline character before or inside a set expression.

Table B.1: List of TTCN‑3 pattern metacharacters

	Metacharacter
	Description

	?
	Match any character (see notes 1 and 2)

	*
	Match any character zero or more times; shall match the longest possible number of characters (see example 1 above) (see notes 1 and 2)

	\
	Cause the following metacharacter to be interpreted as a literal (see note 3). When preceding a character without defined metacharacter meaning "\" and the character together match the character following the "\" (see note 4)

	[]
	Match any character within the specified set, see clause B.1.5.1 for more details

	-
	Has a metacharacter meaning inside a pair of square brackets ("[" and "]") only, except the first and last positions within the bracket. Allows to specify a range of characters; see clause B.1.5.1 for more details

	^
	 Has a metacharacter meaning as the first character following the opening square bracket inside a pair of square brackets ("[" and "]") only and cause to match any character complementing the set of characters following this metacharacter;
see clause B.1.5.1 for more details

	\q{group,plane,row,cell}
	Match the Universal character specified by the quadruple

	{reference}
	Insert the referenced user defined string and interpret it as a regular expression.
See clause B.1.5.2 for more details

	\N{reference}
	Match any character within the set of characters, where the set is defined by the referenced definition; see clause B.1.5.4 for more details

	\d
	Match any numerical digit (equivalent to [0-9])

	\w
	Match any alphanumeric character (equivalent to [0-9a-zA-Z])

	\t
	Match the C0 control character HT(9) (see ISO/IEC 6429 [12])

	\n
	Match any of the following C0 control characters: LF(10), VT(11), FF(12), CR(13) (see ISO/IEC 6429 [12]) (jointly called newline characters)

	\r
	Match the C0 control character CR (see ISO/IEC 6429 [12])

	\s
	Match any one of the following C0 control characters: HT(9), LF(10), VT(11), FF(12), CR(13), SP(32) (see ISO/IEC 6429 [12], ISO/IEC 646 [11]) (jointly called white-space characters)

	\b
	Match a word boundary (any graphical character except SP or DEL is preceded or followed by any of the whitespace or newline characters)

	
	

	\"
	Match the double quote character

	""
	Match the double quote character

	|
	Used to denote two alternative expressions

	()
	Used to group an expression

	#(n, m)
	Match the preceding expression at least n times but no more than m times (postfix). See clause B.1.5.3 for more details

	#n
	Match the previous expression exactly n times (where n is a single digit) (postfix); the same as #(n)

	+
	Match the preceding expression one or several times (postfix); the same as #(1,)

	NOTE 1:
Metacharacters ? and * are able to match any characters of the character set of the root type of the template or template field in which they are used (i.e. not considering type constraints applied). However, it shall not be forgotten, that receiving operations require type checking of the received message before attempting to match it. Therefore received values not complying with the subtype specification of the template or template field are never provided for matching.

NOTE 2:
In some other languages/notations ? and * has different meaning as metacharacters. However in TTCN these characters are traditionally used for matching in the sense as specified in this table.

NOTE 3:
Consequently the backslash character can be matched by a pair of backslash characters without space between them (\\), e.g. the pattern "\\d" will match the string "\d"; opening or closing square brackets can be matched by "\[" and "\]" respectively, etc.

NOTE 4:
Such use of the metacharacter "\" is deprecated as further metacharacters can be defined later.

Character patterns may be composed from several fragments using the concatenation operation. The fragments of the pattern shall be concatenated before any evaluation of the pattern expression. See also the shorthand notation for referenced definitions at concatenation in clause B.1.5.2.
EXAMPLE3 :

template charstring MyTemplate:= pattern "ab?\?" & "xyz*"; // results the same pattern as

 // in example2
B.1.5.1
Set expression

A list of characters enclosed by a pair of "[" and "]" matches any single character in that list. The set expression is delimited by the "[" "]" symbols. In addition to character literals, it is possible to specify character ranges using the hyphen "-" as separator. The range consist of the character immediately before the separator, the character immediately after it and all characters with a character code between the codes of the two bordering characters. A hyphen character "-" inside the list but without preceding or following character loses its special meaning.

The set expression can also be negated by placing the caret "^" character as the first character after the opening square bracket. Negation takes precedence over character ranges. Therefore a hyphen "-" immediately following a negating caret "^" shall be processed as a literal character.

An empty list and an empty negated list are not allowed. Therefore a closing square bracket "]" immediately following an opening square bracket "[" or a caret following the opening square bracket "[" and immediately followed by a closing square bracket "]" shall be processed as literal characters.

All metacharacters, except those listed below, lose their special meaning inside the list:

· "]" not at the first position and not immediately following a "^" at the first position;

· "-" not at the first or last positions in the list;

· "^" at the first position in the list except when immediately followed by a closing square bracket;

· "\", "\d", "\t", "\w", "\r", "\n", "\s" and "\b";

· "\q{group,plane,row,cell}";

· "\N{reference}".

NOTE 1:
Embedded lists are not allowed (for example in pattern "[ab[r-z]]" the second "[" denotes a literal "[", the first "]" closes the list and the second "]" causes an error as no related opening bracket in the pattern).

NOTE 2:
To include a literal caret character "^", place it anywhere except in the first position or precede it with a backslash. To include a literal hyphen "-", place it first or last in the list, or precede it with a backslash. To include a literal closing square bracket "]", place it first or precede it with a backslash. If the first character in the list is the caret "^", then the characters "-" and "]" also match themselves when they immediately follow that caret.

EXAMPLE:

template charstring RegExp1:= pattern "[a-z]"; // this will match any character from a to z

template charstring RegExp2:= pattern "[^a-z]"; // this will match any character except a to z

template charstring RegExp3:= pattern "[AC-E][0-9][0-9][0-9]YKE";

// RegExp3 will match a string which starts with the letter A or a letter between

// C and E (but not e.g. B) then has three digits and the letters YKE

B.1.5.2
Reference expression

In addition to direct string values it is also possible within the pattern to use references to templates, constants, variables, formal parameters, module parameters or to their fields. The reference shall be enclosed within the "{" "}" characters and reference shall resolve to a compatible character string types
. Contents of the referenced templates, constants or variables shall be handled as a regular expression. Each expression shall be dereferenced only once, before the insertion (i.e. the expression dereferenced and inserted into the referencing pattern shall not be dereferenced again).

EXAMPLE 1:

const charstring MyString:= "ab?";

template charstring MyTemplate:= pattern "{MyString}";

This template would match any character string that consists of the characters "ab", followed by any character. In effect any character string following the pattern keyword either explicitly or by reference will be interpreted following the rules defined in this clause.

template universal charstring MyTemplate1:= pattern "{MyString}de\q{1,1,13,7}";
This template would match any character string which consists of the characters "ab", followed by any character, followed by the characters "de", followed by the character in ISO10646-1 with group=1, plane=1, row=13 and cell=7.
If a referenced definition or field of a definition
 contains one or more reference expressions, then these references shall recursively be dereferenced before inserting their contents into the referring pattern.
If a fragment of a pattern contains a single reference only, it is allowed, as a shorthand notation, to reference the definition or the field of the definition directly, i.e. leave out double quotes (" ") and the pair of curly brackets ({ }).
EXAMPLE 2:

const charstring MyConst2 := "ab";

template charstring RegExp1 := pattern "{MyConst2}";

 // matches the string "ab"

template charstring RegExp1 := pattern MyConst2;

 // the same as above, matches the string "ab"

template charstring RegExp2 := pattern "{RegExp1}{RegExp1}";

 // matches the string "abab"

template charstring RegExp2a := pattern "{RegExp1}" & "{RegExp1}";

 // the same as above, matches the string "abab"

template charstring RegExp2b := pattern RegExp1 & RegExp1;

 // the same as above, matches the string "abab"

template charstring RegExp3 := pattern "c{RegExp2}d";

 // matches the string "cababd"

template charstring RegExp4 := pattern "{Reg";

template charstring RegExp5 := pattern "Exp1}";

template charstring RegExp6 := pattern "{RegExp4}{RegExp5}";

 // matches the string "{RegExp1}" only (i.e. shall not be handled as a reference expression

 // after insertion)

template charstring RegExp7 := pattern "{Reg" & "Exp1}";

 // Pls. note the difference to the previous example; in this case the fragments of the

 // pattern are joined before any evaluation, i.e. this template will match the string "ab"

B.1.5.3
Match expression n times

To specify that the preceding expression should be matched a number of times one of the following syntaxes shall be used: "#(n, m)", "#(n,)", "#(, m)", "#(n)", "#n" or "+".. The form "#(n, m)" specifies that the preceding expression must be matched at least n times but not more than m times. The metacharacter postfix "#(n,)" specifies that the preceding expression must be matched at least n times while "#(, m)" indicates that the preceding expression shall be matched not more than m times. Metacharacters (postfixes) "#(n)" and "#n" specify that the preceding expression must be matched exactly n times (they are equivalent to "#(n, n)"). In the form "#n" n shall be a single digit. The metacharacter postfix "+" denotes that the preceding expression must be matched at least 1 time (equivalent to "#(1,)").

EXAMPLE:

template charstring RegExp4:= pattern "[a-z]#(9, 11)";
// match at least 9 but no more than 11

// characters from a to z

template charstring RegExp5a:= pattern "[a-z]#(9)";
// match exactly 9

// characters from a to z

template charstring RegExp5b:= pattern "[a-z]#9";

// match exactly 9

// characters from a to z

template charstring RegExp6:= pattern "[a-z]#(9,)";
// match at least 9

// characters from a to z

template charstring RegExp7:= pattern "[a-z]#(, 11)";
// match no more than 11

// characters from a to z

template charstring RegExp8:= pattern "[a-z]+";

// match at least 1

// characters from a to z,

B.1.5.4
Match a referenced character set

A notation of the form "\N{reference}", where reference is denoting a one‑character‑length template, constant, variable formal parameter or module parameter, matches the character in the referenced value or template.

Referencing a template, constant, variable or module parameter that is not of length 1 shall cause an error.

A notation of the form "\N{typereference}", where "typereference" is a reference to a charstring or universal charstring type, matches any character of the character set denoted by the referenced type.

NOTE 1:
Cases when the referenced set of characters is not a true subset of values allowed by the type definition of the template or template field for which the character pattern is used, are not be treated as an error (but e.g. matching never can occur if the two sets do not overlap).

NOTE 2:
\N{charstring} is equivalent to ? when the latter is applied to a template or template field of charstring type and \N{universal charstring} is equivalent to ? when the latter is applied to a template or template field of universal charstring type (but causes an error if applied to a template or template field of charstring type).

EXAMPLE:

type charstring MyCharRange ("a".."z");

type charstring MyCharList ("a", "z");

const MyCharRange myCharR := "r";

template charstring myTempPatt1 := pattern "\N{myCharR}";

// myTempPatt1 shall match the string "r" only

template charstring myTempPatt2 := pattern "\N{MyCharRange}";

// myTempPatt2 shall match any string containing a single character from a to z

template MyCharRange myTempPatt3 := pattern "\N{MyCharList}";

// myTempPatt3 and shall match strings "a" and "r" only

B.1.5.5
Type compatibility rules for patterns

For the purpose of referenced patterns (see clause B.1.5.2) and references character sets (see clause B.1.5.3) specific type compatibility rules apply: a referenced type, template, constant, variable or module parameter of the type charstring always can be used in the pattern specification of a template or template field of universal charstring type; a referenced type, template or value of the type universal charstring can be used in the pattern specification of a template or template field of charstring type if all characters used in the referenced template or value and the character set allowed by the referenced type has their corresponding characters in the charstring type (see definition of corresponding characters in clause 6.3.1).

�for example it shall not resolve to universal charstring if the referencing pattern is a charstring type. But similar relation is also true for subtypes of the same root type.

�The meaning of this sentence is unclear to me (why it is needed here?).

�It is defined already above which defintions can be referenced; e.g. formal and module parameters were missing from the list

�Example is the same as with myTempPatt2, but the explanation is invalid.

ETSI

