Error! No text of specified style in document.
2
Error! No text of specified style in document.

6.2.10.2
Reuse of component types

It is possible to define component types as the extension of other component types, using the extends keyword.

Syntactical Structure
type component ComponentTypeIdentifier extends ComponentTypeIdentifier "{"

{ (PortInstance

| VarInstance

| TimerInstance

| ConstDef) }
"}"

Semantic Description
In such a definition, the new type definition is referred to as the extended type, and the type definition following the extends keyword is referred to as the parent type. The effect of this definition is that the extended type will implicitly also contain all definitions from the parent type. It is called the effective type definition.

It is allowed to have one component type extending several parent types in one definition, which have to be specified as a comma-separated list of types in the definition. Any of the parent types may also be defined by means of extension. The effective component type definition of the extended type is obtained as the collection of all constant, variable, timer and port definitions contributed by the parent types (determined recursively if a parent type is also defined by means of an extension) and the definitions declared in the extended type directly. The effective component type definition shall be name clash free.

NOTE 1:
It is not considered to be a different declaration
 and hence causes no error if a specific definition is contributed to the extended type by different parent types (via different extension paths).

The semantics of component types with extensions are defined by simply replacing each component type definition by its effective component type definition as a pre-processing step prior to using it.

NOTE 2:
For component type compatibility, this means that a component reference c of type CT1, which extends CT2, is compatible with CT2, and test cases, functions and altsteps specifying CT2 in their runs on clauses can be executed on c (see clause Error! Reference source not found.).

Restrictions
a) When defining component types by extension, there shall be no name clash between the definitions being taken from the parent type and the definitions being added in the extended type, i.e. there shall not be a port, variable, constant or timer identifier that is declared both in the parent type (directly or by means of extension) and the extended type. It is not considered to be a name clash if a specific definition is contributed to the extended type via different extension paths.
b) When defining component types by extending more than one parent type, there shall be no name clash between the definitions of the different parent types, i.e. there shall not be a port, variable, constant or timer identifier that is declared in any two of the parent types (directly or by means of extension). It is not considered to be a name clash if a specific definition is contributed to the extended type via different extension paths
.
c) It is allowed to extend component types that are defined by means of extension, as long as no cyclic chain of definition is created.

Examples
EXAMPLE 1:
A component type extension and its effective type definition.

type component MyMTCType

{

 var integer MyLocalInteger;

 timer MyLocalTimer;

 port MyMessagePortType PCO1

}

type component MyExtendedMTCType extends MyMTCType

{

 var float MyLocalFloat;

 timer MyOtherLocalTimer;

 port MyMessagePortType PCO2;

}

// effectively, the above definition is equivalent to this one:

type component MyExtendedMTCType

{

 /* the definitions from MyMTCType */

 var integer MyLocalInteger;

 timer MyLocalTimer;

 port MyMessagePortType PCO1

 /* the additional definitions */

 var float MyLocalFloat;

 timer MyOtherLocalTimer;

 port MyMessagePortType PCO2;

}

EXAMPLE 2:
A component type extension chain and forbidden cyclic extensions.

type component MTCTypeA extends MTCTypeB { /* … */ };

type component MTCTypeB extends MTCTypeC { /* … */ };

type component MTCTypeC extends MTCTypeA { /* … */ }; // ERROR - cyclic extension

type component MTCTypeD extends MTCTypeD { /* … */ }; // ERROR - cyclic extension

EXAMPLE 3:
Component type extensions with name clashes.

type component MyExtendedMTCType extends MyMTCType

{

 var integer MyLocalInteger; // ERROR - already defined in MyMTCType (see above)

 var float MyLocalTimer; // ERROR - timer with that name exists in MyMTCType

 port MyOtherMessagePortType PCO1; // ERROR - port with that name exists in MyMTCType

}

type component MyBaseComponent { timer MyLocalTimer };

type component MyInterimComponent extends MyBaseComponent { timer MyOtherTimer };

type component MyExtendedComponent extends MyInterimComponent

{

 timer MyLocalTimer; // ERROR - already defined in MyInterimComponent via extension

}

EXAMPLE 4:
Component type extension from several parent types.

type component MyCompB { timer T };

type component MyCompC { var integer T };

type component MyCompD extends MyCompB, MyCompC {}

 // ERROR - name clash between MyCompB and MyCompC

// MyCompB is defined above

type component MyCompE extends MyCompB {

 var integer MyVar1 := 10;

}

type component MyCompF extends MyCompB {

 var float MyVar2 := 1.0;

}

type component MyCompG extends MyCompB, MyCompE, MyCompF {

 // No name clash.

 // All three parent types of MyCompG have a timer T, either directly or via extension of

 // MyCompB; as all these stem (directly or via extension) from timer T declared in MyCompB,

 // which make this form of collision legal.

 /* additional definitions here */

}

6.2.11
Component references

�typo

�Example 4 already highlights this case.

ETSI

