Error! No text of specified style in document.
27
Error! No text of specified style in document.

16
Functions, altsteps and testcases
In TTCN‑3, functions, altsteps and testcases are used to specify and structure test behaviour, define default behaviour and to structure computation in a module etc. as described in the following clauses.

16.1
Functions

Functions are used in TTCN‑3 to express test behaviour, to organize test execution or to structure computation in a module, for example, to calculate a single value, to initialize a set of variables or to check some condition.
Syntactical Structure
function FunctionIdentifier
"(" [{ (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar) [","] }] ")"
[runs on ComponentType]

[return [template] Type]

StatementBlock
Semantic Description
Functions are portions of TTCN-3 behaviour, which perform a specific task and are relatively independent of the remaining behaviour.

Functions may return a value or a template. Value return is denoted by the return keyword followed by a type identifier. Template return is denoted by the return template keywords followed by a type identifier. Template return can be restricted to the matching mechanisms specific value and omit, see clause 5.4.1.2. The keyword return, when used in the body of the function with a value return defined in its header, shall always be followed by an expression representing the return value. The type of the return value shall be compatible with the return type. The keyword return, when used in the body of the function with a template return defined in its header, shall always be followed by an expression or a template instance representing the return template. The type of the return template shall be compatible with the return template type. If the return template is restricted, then the return template shall either be a specific value or omit. The return statement in the body of the function causes the function to terminate and to return the return value to the location of the call of the function.

The behaviour of a function can be defined by using statements and operations described in clauses 18 to 25 and clause 26. If a function uses variables, constants, timers and ports that are declared in a component type definition, the component type shall be referenced using the runs on keywords in the function header. The one exception to this rule is if all the necessary component-wide information is passed in the function as parameters.

Functions may be parameterized.

Restrictions
a) A function without runs on clause shall never invoke a function or altstep or activate an altstep as default with a runs on clause locally.

b) Functions started by using the start test component operation shall always have a runs on clause (see clause 22.5) and are considered to be invoked in the component to be started, i.e. not locally. However, the start test component operation may be invoked in functions without a runs on clause.

NOTE 1:
The restrictions concerning the runs on clause are only related to functions and altsteps and not to test cases.

c) Functions used in the control part of a TTCN‑3 module shall have no runs on clause.

NOTE 2:
Nevertheless, functions used in the control part are allowed to execute test cases.

d) The rules for formal parameter lists shall be followed as defined in clause 5.4.
Examples
EXAMPLE 1:
Function with return.

// Definition of MyFunction which has no parameters

function MyFunction() return integer

{

return 7;
// returns the integer value 7 when the function terminates

}

EXAMPLE 2:
Function with template return.

// Definition of functions which may return matching symbols or templates

function MyFunction2() return template integer

{

:

return ?;
// returns the matching mechanism AnyValue

}

function MyFunction3() return template octetstring

{

:

return 'FF??FF'O;
// returns an octetstring with AnyValue inside it

}

EXAMPLE 3:
Function with runs on clause.

function MyFunction3() runs on MyPTCType {

lo

// MyFunction3 doesn't return a value, but

var integer MyVar := 5;

// does make use of the port operation

PCO1.send(MyVar);

// send and therefore requires a runs on

// clause to resolve the port identifiers

}

// by referencing a component type

EXAMPLE 4:
Parameterized function.

function MyFunction2(inout integer MyPar1) {

// MyFunction2 doesn't return a value

MyPar1 := 10 * MyPar1;
// but changes the value of
MyPar1 which

}

// is passed in by reference

16.1.1
Invoking functions

A function is invoked by referring to its name and providing the actual list of parameters.
Syntactical Structure
FunctionRef "(" [{ (TimerRef | TemplateInstance | Port | ComponentRef) [","] }] ")"
Semantic Description
A function invocation results in the execution of the statement block of the invoked function. The invoked function is performed by the test component invoking it. Actual parameters are passed into the statement block. If the function returns (upon termination and potentially with a return value), the test components continues its behaviour right after the function invocation.
Restrictions
e) Functions that do not return values shall be invoked directly. Functions that return values may be invoked directly or inside expressions.

f) The rules for actual parameter lists shall be followed as defined in clause 5.4.

g) Special restrictions apply to functions bound to test components using the start test component operation. These restrictions are described in clause 21.2.2.

h) When invoking a function, the compatibility to the test component type of the invoking test component as described in clause 6.3.3 need to be fulfilled.

i) Restrictions on invoking functions from specific places are described in clause 16.1.4.
Examples

MyVar := MyFunction4();
// The value returned by MyFunction4 is assigned to MyVar.

// The types of the returned value and MyVar have to be compatible

MyFunction2(MyVar2);
// MyFunction2 doesn't return a value and is called with the

// actual parameter MyVar2, which may be passed in by reference

MyVar3 := MyFunction6(4) + MyFunction7(MyVar3);
// Functions used in expressions

16.1.2
Predefined functions

TTCN‑3 contains a number of predefined (built-in) functions that need not be declared before use. These are summarized in table 10.
Table 10: List of TTCN‑3 predefined functions

	Category
	Function
	Keyword

	Conversion functions
	Convert integer value to charstring value
	int2char

	
	Convert integer value to universal charstring value
	int2unichar

	
	Convert integer value to bitstring value
	int2bit

	
	Convert integer value to hexstring value
	int2hex

	
	Convert integer value to octetstring value
	int2oct

	
	Convert integer value to charstring value
	int2str

	
	Convert integer value to float value
	int2float

	
	Convert float value to integer value
	float2int

	
	Convert charstring value to integer value
	char2int

	
	Convert charstring value to octetstring value
	char2oct

	
	Convert universal charstring value to integer value
	unichar2int

	
	Convert bitstring value to integer value
	bit2int

	
	Convert bitstring value to hexstring value
	bit2hex

	
	Convert bitstring value to octetstring value
	bit2oct

	
	Convert bitstring value to charstring value
	bit2str

	
	Convert hexstring value to integer value
	hex2int

	
	Convert hexstring value to bitstring value
	hex2bit

	
	Convert hexstring value to octetstring value
	hex2oct

	
	Convert hexstring value to charstring value
	hex2str

	
	Convert octetstring value to integer value
	oct2int

	
	Convert octetstring value to bitstring value
	oct2bit

	
	Convert octetstring value to hexstring value
	oct2hex

	
	Convert octetstring value to charstring value
	oct2str

	
	Convert octetstring value to charstring value, version II
	oct2char

	
	Convert charstring value to integer value
	str2int

	
	Convert charstring value to octetstring value
	str2oct

	
	Convert charstring value to float value
	str2float

	
	Convert enumeration to integer value
	enum2int

	Length/size functions
	Return the length of a value or template of any string type, record of, set of or array
	lengthof

	
	Return the number of elements in a value or a template of a record or set.
	sizeof

	Presence checking functions
	Determine if an optional field in a record or set value or template is present
	ispresent

	
	Determine which choice has been selected in a union value or template
	ischosen

	
	Determine if a template evaluates to a concrete value
	isvalue

	String/List handling functions
	Returns part of the input string matching the specified pattern group within a character pattern
	regexp

	
	Returns the specified portion of the input string/list value or template
	substr

	
	Replaces a substring of a string with or inserts the input string into a string, and similarly for lists
	replace

	Codec functions
	Encode a value into a bitstring
	encode

	
	Decode a bitstring into a value
	decode

	Other functions
	Generate a random float number
	rnd

Syntactical Structure
int2char "(" SingleExpression ")" |
int2unichar "(" SingleExpression ")" |
int2bit "(" SingleExpression "," SingleExpression ")" |
int2hex "(" SingleExpression "," SingleExpression ")" |
int2oct "(" SingleExpression "," SingleExpression ")" |
int2str "(" SingleExpression ")" |
int2float "(" SingleExpression ")" |
float2int "(" SingleExpression ")" |
char2int "(" SingleExpression ")" |
char2oct "(" SingleExpression ")" |
unichar2int "(" SingleExpression ")" |
bit2int "(" SingleExpression ")" |
bit2hex "(" SingleExpression ")" |
bit2oct "(" SingleExpression ")" |
bit2str "(" SingleExpression ")" |
hex2int "(" SingleExpression ")" |
hex2bit "(" SingleExpression ")" |
hex2oct "(" SingleExpression ")" |
hex2str "(" SingleExpression ")" |
oct2int "(" SingleExpression ")" |
oct2bit "(" SingleExpression ")" |
oct2hex "(" SingleExpression ")" |
oct2str "(" SingleExpression ")" |
oct2char "(" SingleExpression ")" |
str2int "(" SingleExpression ")" |
str2oct "(" SingleExpression ")" |
str2float "(" SingleExpression ")" |
enum2int "(" SingleExpression ")" |

lengthof "(" TemplateInstance ")" |
sizeof "(" TemplateInstance ")" |
ispresent "(" TemplateInstance ")" |
ischosen "(" TemplateInstance ")" |
isvalue "(" TemplateInstance ")" |
regexp "(" TemplateInstance"," TemplateInstance"," SingleExpression ")" |
substr "(" TemplateInstance "," SingleExpression "," SingleExpression ")" |
replace "(" SingleExpression "," SingleExpression "," SingleExpression "," SingleExpression ")" |
encode "(" TemplateInstance
")" |
decode "(" SingleExpression "," SingleExpression ")"
rnd "(" [SingleExpression] ")"
Semantic Description
The description of predefined functions is given in annex C.

Restrictions
j) When a predefined function is invoked:

1)
the number of the actual parameters shall be the same as the number of the formal parameters; and

2)
each actual parameter shall evaluate to an element of its corresponding formal parameter's type; and

3)

all actual parameters shall be initialized with the exception of the actual parameter passed to the isvalue predefined function, which may be uninitialized.

k) Restrictions on invoking functions from specific places are described in clause 16.1.4.
Examples

var hexstring h:= bit2hex ('111010111'B);

var octetstring o:= substr ('01AB23CD'O, 1, 2);

16.1.3
External functions

A function may be defined within a module or be declared as being defined externally (i.e. external).

Syntactical Structure
external function ExtFunctionIdentifier

"(" [{ (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar) [","] }] ")"

[return Type]
Semantic Description
For an external function only the function interface has to be provided in the TTCN‑3 module. The realization of the external function is outside the scope of the present document.
Restrictions
l) External functions are not allowed to contain port, timer or default handling operations.

m) External functions are not allowed to return templates.

n) Restrictions on invoking functions from specific places are described in clause 16.1.4.
Examples

external function MyFunction4() return integer;
// External function without parameters

// which returns an integer value

external function InitTestDevices();
// An external function which only has an

// effect outside the TTCN‑3 module

16.1.4
Invoking functions from specific places

Value returning functions can be called during communication operations (in templates, template fields or in-line templates) or during snapshot evaluation (in Boolean guards of alt statements or altsteps (see clause 20.2) and in initialization of altstep local definitions (see clause 16.2). To avoid side effects that cause changing the state of the component or the actual snapshot and to prevent different results of subsequent evaluations on an unchanged snapshot, the following operations shall not be used in functions called in the cases specified above:

o) All component operations, i.e. create, start (component), stop (component), kill, running (component), alive, done and killed (see notes 1, 3, 4 and 6).

p) All port operations, i.e. start (port), stop (port), halt, clear, send, receive, trigger, call, getcall, reply, getreply, raise, catch, check, connect, map (see notes 1, 2, 3 and 6).
q) The action operation (see notes 2 and 6).

r) All timer operations, i.e. start (timer), stop (timer), running (timer), read, timeout (see notes 4 and 6).

s) Calling external functions (see notes 4 and 6).

t) Calling the rnd predefined function (see notes 4 and 6).

u) Changing of component variables, i.e. using component variables on the right-hand side of assignments, and in the instantiation of out and inout parameters (see notes 4 and 6).

v) Calling the setverdict operation (see notes 4 and 6).

w) Activation and deactivation of defaults, i.e. the activate and deactivate statements (see notes 5 and 6).

x) Calling functions with out or inout parameters (see notes 7 and 8).

NOTE 1:
The execution of the operations start, stop, done, killed, halt, clear, receive, trigger, getcall, getreply, catch and check can cause changes to the current snapshot.

NOTE 2:
The operations send, call, reply, raise, and action shall be avoided for readability purposes, i.e. all communication shall be made explicit and not as a side-effect of another communication operation or the evaluation of a snapshot.

NOTE 3:
The operations map, unmap, connect, disconnect, create shall be avoided for readability purposes, i.e. all configuration operations shall be made explicit, and not as a side-effect of a communication operation or the evaluation of a snapshot.

NOTE 4:
Calling of external functions, rnd, running, alive, read, setverdict, and writing to component variables shall be avoided because it may lead to different results of subsequent evaluations of the same snapshot, thus, e.g. rendering deadlock detection impossible.

NOTE 5:
The operations activate and deactivate shall be avoided because they modify the set of defaults that is considered during the evaluation of the current snapshot.

NOTE 6:
Restrictions except the limitation on the use of out or inout parameterization shall apply recursively, i.e. it is disallowed to use them directly, or via an arbitrary long chain of function invocations.

NOTE 7:
The restriction of calling functions with out or inout parameters does not apply recursively, i.e. calling functions that themselves call functions with out or inout parameters is legal.

NOTE 8:
Using out or inout parameters shall be avoided because it may also lead to different results of subsequent evaluations of the same snapshot.

16.2
Altsteps

TTCN‑3 uses altsteps to specify default behaviour or to structure the alternatives of an alt statement.
Syntactical Structure
altstep AltstepIdentifier
"(" [{ (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar) [","] }] ")"

[runs on ComponentType]

"{"

{ (VarInstance | TimerInstance | ConstDef | TemplateDef) [";"] }

AltGuardList
"}"
Semantic Description
Altsteps are scope units similar to functions. The altstep body defines an optional set of local definitions and a set of alternatives, the so-called top alternatives, that form the altstep body. The syntax rules of the top alternatives are identical to the syntax rules of the alternatives of alt statements.

The behaviour of an altstep can be defined by using the program statements and operations summarized in clause 18. Altsteps may invoke functions and altsteps or activate altsteps as defaults.

Altsteps may be parameterized as defined in clause 5.4.
Restrictions
a) The local definitions of an altstep shall be defined before the set of alternatives.

b) The initialization of local definitions by calling value returning functions may have side effects. To avoid side effects that cause an inconsistency between the actual snapshot and the state of the component, and to prevent different results of subsequent evaluations on an unchanged snapshot, restrictions given in clause 16.1.4 shall apply to the initialization of local definitions.

c) If an altstep includes port operations or uses component variables, constants or timers the associated component type shall be referenced using the runs on keywords in the altstep header. The one exception to this rule is if all ports, variables, constants and timers used within the altstep are passed in as parameters.

d) An altstep without a runs on clause shall never invoke a function or altstep or activate an altstep as default with a runs on clause locally.

e) An altstep that is activated as a default shall only have in value or template parameters, port parameters, and timer parameters. An altstep that is only invoked as an alternative in an alt statement or as stand-alone statement in a TTCN‑3 behaviour description may have in, out and inout parameters. The rules for formal parameter lists shall be followed as defined in clause 5.4.

Examples
EXAMPLE 1:
Parameterized altstep with runs on clause.

// Given

type component MyComponentType {

var integer MyIntVar := 0;

timer MyTimer;

port MyPortTypeOne PCO1, PCO2;

port MyPortTypeTwo PCO3;

}

// Altstep definition using PCO1, PCO2, MyIntVar and MyTimer of MyComponentType

altstep AltSet_A(in integer MyPar1) runs on MyComponentType {

[] PCO1.receive(MyTemplate(MyPar1, MyIntVar) {

setverdict(inconc);

 }

[] PCO2.receive {

repeat

 }

[] MyTimer.timeout {

setverdict(fail);

stop

 }

}

EXAMPLE 2:
Altstep with local definitions.

altstep AnotherAltStep(in integer MyPar1) runs on MyComponentType {

var integer MyLocalVar := MyFunction();

// local variable

const float MyFloat := 3.41;

// local constant

[] PCO1.receive(MyTemplate(MyPar1, MyLocalVar) {

setverdict(inconc);

 }

[] PCO2.receive {

repeat

 }

}

16.2.1
Invoking altsteps

The invocation of an altstep is always related to an alt statement. The invocation may be done either implicitly by the default mechanism (see clause 21) or explicitly by a direct call within an alt statement (see clause 20.2).
Syntactical Structure
AltstepRef "(" [{ (TimerRef | TemplateInstance | Port | ComponentRef) [","] }] ")"
Semantic Description
The invocation of an altstep causes no new snapshot and the evaluation of the top alternatives of an altstep is done by using the actual snapshot of the alt statement from which the altstep was called.

NOTE:
A new snapshot within an altstep will of course be taken, if within a selected top alternative a new alt statement is specified and entered.

For an implicit invocation of an altstep by means of the default mechanism, the altstep shall be activated as a default by means of an activate statement before the place of the invocation is reached.

An explicit call of an altstep within an alt statement looks syntactically like a function invocation as an alternative. When an altstep is called explicitly within an alt statement, the next alternative to be checked is the first alternative of the altstep. The alternatives of the altstep are checked and executed the same way as alternatives of an alt statement (see clause 20.1) with the exception that no new snapshot is taken when entering the altstep. An unsuccessful termination of the altstep (i.e. all top alternatives of the altstep have been checked and no matching branch is found) causes the evaluation of the next alternative or invocation of the default mechanism (if the explicit call is the last alternative of the alt statement). A successful termination may cause either the termination of the test component, i.e. the altstep ends with a stop statement, or a new snapshot and re-evaluation of the alt statement, i.e. the altstep ends with repeat (see clause 20.2) or a continuation immediately after the alt statement, i.e. the selected top alternative of the altstep ends without explicit repeat or stop.

An altstep can also be called as a stand-alone statement in a TTCN‑3 behaviour description. In this case, the call of the altstep can be interpreted as shorthand for an alt statement with only one alternative describing the explicit call of the altstep.

Restrictions
y) When invoking an altstep, the compatibility of the test component type of the invoking test component and of the altstep runs on clause (as described in clause 6.3.3) need to be fulfilled.
z) Further restrictions on invoking altsteps in the activate statement are given in clause 20.5.2.
Examples
EXAMPLE 1:
Implicit invocation of an altstep via a default activation.

 :

var default MyDefVarTwo := activate(MySecondAltStep()); // Activation of an altstep as default

 :

EXAMPLE 2:
Explicit invocation of an altstep within an alt statement.

 :

alt {

[] PCO3.receive {

 …

}

[] AnotherAltStep();
// explicit call of altstep AnotherAltStep as an alternative

// of an alt statement

[] MyTimer.timeout {}

}

EXAMPLE 3:
Explicit, standalone invocation of an altstep.

// The statement

AnotherAltStep(); // AnotherAltStep is assumed to be a correctly defined altstep

//is a shorthand for

alt {

[] AnotherAltStep();

}

16.3
Test cases

A test case is complete and independent specification of the actions required to achieve a specific test purpose. It typically starts in a stable testing state and ends in a stable testing state. It may involve one or more consecutive or concurrent connections to the SUT. The test case should be complete in the sense that it is sufficient to enable a test verdict to be assigned unambiguously to each potentially observable test outcome (i.e. sequence of test events). The test case should be independent in the sense that it should be possible to execute the derived executable test case in isolation from other such test cases.
In TTCN-3, test cases are a special kind of function. Test cases define the behaviours, which have to be executed to check whether the SUT passes a test or not. This behaviour is performed by the MTC which is automatically created when a test case is being executed.
Syntactical Structure
testcase TestcaseIdentifier
"(" [{ (FormalValuePar | FormalTemplatePar) [","] }] ")"

runs on ComponentType
[system ComponentType]

StatementBlock
Semantic Description
A test case is considered to be a self-contained and complete specification that checks a test purpose. The result of a test case execution is a test verdict.

A test case header has two parts:

aa) interface part (mandatory): denoted by the keyword runs on which references the required component type for the MTC and makes the associated port names visible within the MTC behaviour; and

ab) test system part (optional): denoted by the keyword system which references the component type which defines the required ports for the test system interface. The test system part shall only be omitted if, during test execution, only the MTC is instantiated. In this case, the MTC type defines the test system interface ports implicitly.

The behaviour of a test case can be defined by using the program statements and operations described in clause 18.

Test cases may be parameterized as described in clause 5.4. Test cases can be executed in the control part of a module (see clause 26).
Restrictions
ac) The rules for formal parameter lists shall be followed as defined in clause 5.4.

ad) Test cases may only be invoked with an execute statement in a module control part as defined in clause 26.

Examples

testcase MyTestCaseOne()

runs on MyMtcType1

// defines the type of the MTC

system MyTestSystemType

// makes the port names of the TSI visible to the MTC

{

:
// The behaviour defined here executes on the mtc when the test case invoked

}

// or, a test case where only the MTC is instantiated

testcase MyTestCaseTwo() runs on MyMtcType2

{

:
// The behaviour defined here executes on the mtc when the test case invoked

}

Annex C (normative):
Pre-defined TTCN‑3 functions

This annex defines the TTCN‑3 predefined functions.

C.0
General exception handling procedures

When the general restrictions specified in clause 16.1.2 are not met, this shall cause a compile time or runtime error. Error situations for which no explicit exception-handling rule is defined in the relevant clauses of this annex shall cause a TTCN‑3 compile-time or run-time error. Which error situation causes compile-time and which one run-time error is a tool implementation option.

C.1
Integer to character

int2char(integer invalue) return charstring

This function converts an integer value in the range of 0 to 127 (8-bit encoding) into a single-character-length charstring value. The integer value describes the 8-bit encoding of the character.

Error causes are:
· invalue is less than 0 or greater than 127.
C.2
Integer to universal character

int2unichar(integer invalue) return universal charstring

This function converts an integer value in the range of 0 to 2 147 483 647 (32-bit encoding) into a single‑character‑length universal charstring value. The integer value describes the 32-bit encoding of the character.

Error causes are:

· invalue is less than 0 or greater than 2147483647

C.3
Integer to bitstring

int2bit(in integer invalue, in integer length) return bitstring

This function converts a single integer value to a single bitstring value. The resulting string is length bits long.

For the purposes of this conversion, a bitstring shall be interpreted as a positive base 2 integer value. The rightmost bit is least significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0 and 1 respectively. If the conversion yields a value with fewer bits than specified in the length parameter, then the bitstring shall be padded on the left with zeros.

Error causes are:
· invalue is less than zero.
· the conversion yields a return value with more bits than specified by length.
C.4
Integer to hexstring

int2hex(in integer invalue, in integer length) return hexstring
This function converts a single integer value to a single hexstring value. The resulting string is length hexadecimal digits long.

For the purposes of this conversion, a hexstring shall be interpreted as a positive base 16 integer value. The rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal digits 0 to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer hexadecimal digits than specified in the length parameter, then the hexstring shall be padded on the left with zeros.

Error causes are:

· invalue is less than zero.
· the conversion yields a return value with more hexadecimal characters than specified by length.
C.5
Integer to octetstring

int2oct(in integer invalue, in integer length) return octetstring
This function converts a single integer value to a single octetstring value. The resulting string is length octets long.

For the purposes of this conversion, an octetstring shall be interpreted as a positive base 16 integer value. The rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The number of hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The hexadecimal digits 0 to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer hexadecimal digits than specified in the length parameter, then the hexstring shall be padded on the left with zeros.

Error causes are:
· invalue is less than zero.
· the conversion yields a return value with more octets than specified by length.
C.6
Integer to charstring

int2str(integer invalue) return charstring
This function converts the integer value into its string equivalent (the base of the return string is always decimal).

The general error causes in clause 16.1.2 apply.

EXAMPLE:

int2str(66)
// will return the charstring value "66"

int2str(-66)
// will return the charstring value "-66"

int2str(0)

// will return the charstring value "0"
C.7
Integer to float

int2float (integer invalue) return float

This function converts an integer value into a float value.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

int2float(4) = 4.0
C.8
Float to integer

float2int (float invalue) return integer

This function converts a float value into an integer value by removing the fractional part of the argument and returning the resulting integer.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

float2int(3.12345E2) = float2int(312.345) = 312
C.9
Character to integer

char2int(charstring invalue) return integer

This function converts a single-character-length charstring value into an integer value in the range of 0 to 127. The integer value describes the 8-bit encoding of the character.
Error causes are:
· length of invalue does not equal 1.
C.10
Character string to octetstring

char2oct (charstring invalue) return octetstring
This function converts a charstring invalue to an octetstring. Each octet of the octetstring will contain the ISO/IEC 646 [11] codes (according to the IRV) of the appropriate characters of invalue.

The general error causes in clause 16.1.2 apply.
EXAMPLE:

char2oct ("Tinky-Winky") = '54696E6B792D57696E6B79'O
C.11
Universal character to integer

unichar2int(universal charstring invalue) return integer

This function converts a single-character-length universal charstring value into an integer value in the range of 0 to 2 147 483 647. The integer value describes the 32-bit encoding of the character.

Error causes are:
· length of invalue does not equal 1.
C.12
Bitstring to integer

bit2int(bitstring invalue) return integer

This function converts a single bitstring value to a single integer value.

For the purposes of this conversion, a bitstring shall be interpreted as a positive base 2 integer value. The rightmost bit is least significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0 and 1 respectively.

NOTE:
On real test systems the integer interpretation of invalue may lead to an overflow problem that causes compile time or run-time error. However, this is out of the scope of the present document.

The general error causes in clause 16.1.2 apply.

C.13
Bitstring to hexstring

bit2hex (bitstring invalue) return hexstring
This function converts a single bitstring value to a single hexstring. The resulting hexstring represents the same value as the bitstring.

For the purpose of this conversion, a bitstring shall be converted into a hexstring, where the bitstring is divided into groups of four bits beginning with the rightmost bit. Each group of four bits is converted into a hex digit as follows:

'0000'B ('0'H,
'0001'B ('1'H,
'0010'B ('2'H,
'0011'B ('3'H,
'0100'B ('4'H,
'0101'B ('5'H,
'0110'B ('6'H,
'0111'B ('7'H,
'1000'B ('8'H,
'1001'B ('9'H,
'1010'B ('A'H,
'1011'B ('B'H,
'1100'B ('C'H,
'1101'B ('D'H,
'1110'B ('E'H, and '1111'B ('F'H.

When the leftmost group of bits does contain less than 4 bits, this group is filled with '0'B from the left until it contains exactly 4 bits and is converted afterwards. The consecutive order of hex digits in the resulting hexstring is the same as the order of groups of 4 bits in the bitstring.

The general error causes in clause 16.1.2 apply.
EXAMPLE:

bit2hex ('111010111'B)= '1D7'H
C.14
Bitstring to octetstring

bit2oct (bitstring invalue) return octetstring
This function converts a single bitstring value to a single octetstring. The resulting octetstring represents the same value as the bitstring.

For the conversion the following holds: bit2oct(value)=hex2oct(bit2hex(value)).

The general error causes in clause 16.1.2 apply.
EXAMPLE:

bit2oct ('111010111'B)= '01D7'O

C.15
Bitstring to charstring

bit2str (bitstring invalue) return charstring

This function converts a single bitstring value to a single charstring. The resulting charstring has the same length as the bitstring and contains only the characters '0' and '1'.

For the purpose of this conversion, a bitstring should be converted into a charstring. Each bit of the bitstring is converted into a character '0' or '1' depending on the value 0 or 1 of the bit. The consecutive order of characters in the resulting charstring is the same as the order of bits in the bitstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

bit2str ('1110101'B) will return "1110101"
C.16
Hexstring to integer

hex2int(hexstring invalue) return integer
This function converts a single hexstring value to a single integer value.

For the purposes of this conversion, a hexstring shall be interpreted as a positive base 16 integer value. The rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal digits 0 to F represent the decimal values 0 to 15 respectively.

NOTE:
On real test systems the integer interpretation of invalue may lead to an overflow problem that causes compile time or run-time error. However, this is out of the scope of the present document.

The general error causes in clause 16.1.2 apply.

C.17
Hexstring to bitstring

hex2bit (hexstring invalue) return bitstring
This function converts a single hexstring value to a single bitstring. The resulting bitstring represents the same value as the hexstring.

For the purpose of this conversion, a hexstring shall be converted into a bitstring, where the hex digits of the hexstring are converted in groups of bits as follows:

'0'H ('0000'B,
'1'H ('0001'B,
'2'H ('0010'B,
'3'H ('0011'B,
'4'H ('0100'B,
'5'H ('0101'B,
'6'H ('0110'B,
'7'H ('0111'B,
'8'H ('1000'B,
'9'H ('1001'B,
'A'H ('1010'B,
'B'H ('1011'B,
'C'H ('1100'B,
'D'H ('1101'B,
'E'H ('1110'B, and 'F'H ('1111'B.

The consecutive order of the groups of 4 bits in the resulting bitstring is the same as the order of hex digits in the hexstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

hex2bit ('1D7'H)= '000111010111'B
C.18
Hexstring to octetstring

hex2oct (hexstring invalue) return octetstring
This function converts a single hexstring value to a single octetstring. The resulting octetstring represents the same value as the hexstring.

For the purpose of this conversion, a hexstring shall be converted into a octetstring, where the octetstring contains the same sequence of hex digits as the hexstring when the length of the hexstring modulo 2 is 0. Otherwise, the resulting octetstring contains 0 as leftmost hex digit followed by the same sequence of hex digits as in the hexstring.

The general error causes in clause 16.1.2 apply.
EXAMPLE:

hex2oct ('1D7'H)= '01D7'O
C.19
Hexstring to charstring

hex2str (hexstring invalue) return charstring
This function converts a single hexstring value to a single charstring. The resulting charstring has the same length as the hexstring and contains only the characters '0' to '9'and 'A' to 'F'.

For the purpose of this conversion, a hexstring should be converted into a charstring. Each hex digit of the hexstring is converted into a character '0' to '9' and 'A' to 'F' depending on the value 0 to 9 or A to F of the hex digit. The consecutive order of characters in the resulting charstring is the same as the order of digits in the hexstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

hex2str ('AB801'H) will return "AB801"
C.20
Octetstring to integer

oct2int(octetstring invalue) return integer
This function converts a single octetstring value to a single integer value.

For the purposes of this conversion, an octetstring shall be interpreted as a positive base 16 integer value. The rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The number of hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The hexadecimal digits 0 to F represent the decimal values 0 to 15 respectively.
NOTE:
On real test systems the integer interpretation of invalue may lead to an overflow problem that causes compile time or run-time error. However, this is out of the scope of the present document.
The general error causes in clause 16.1.2 apply.
C.21
Octetstring to bitstring

oct2bit (octetstring invalue) return bitstring

This function converts a single octetstring value to a single bitstring. The resulting bitstring represents the same value as the octetstring.

For the conversion the following holds: oct2bit(value)=hex2bit(oct2hex(value)).

The general error causes in clause 16.1.2 apply.

EXAMPLE:

oct2bit ('01D7'O)='0000000111010111'B
C.22
Octetstring to hexstring

oct2hex (octetstring invalue) return hexstring
This function converts a single octetstring value to a single hexstring. The resulting hexstring represents the same value as the octetstring.

For the purpose of this conversion, a octetstring shall be converted into a hexstring containing the same sequence of hex digits as the octetstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

oct2hex ('1D74'O)= '1D74'H

C.23
Octetstring to character string

oct2str (octetstring invalue) return charstring
This function converts an octetstring invalue to an charstring representing the string equivalent of the input value. The resulting charstring shall have the same length as the incoming octetstring.

For the purpose of this conversion each hex digit of invalue is converted into a character '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E' or 'F' echoing the value of the hex digit. The consecutive order of characters in the resulting charstring is the same as the order of hex digits in the octetstring.

The general error causes in clause 16.1.2 apply.

EXAMPLE:

oct2str ('4469707379'O) = "4469707379"
C.24
Octetstring to character string, version II

oct2char (octetstring invalue) return charstring
This function converts an octetstring invalue to a charstring. The input parameter invalue shall not contain octet values higher than 7F. The resulting charstring shall have the same length as the input octetstring. The octets are interpreted as ISO/IEC 646 [11] codes (according to the IRV) and the resulting characters are appended to the returned value.

The general error causes in clause 16.1.2 apply.
EXAMPLE:

oct2char ('4469707379'O) = "Dipsy"

NOTE:
The character string returned may contain non-graphical characters, which can not be presented between the double quotes.

C.25
Charstring to integer

str2int(charstring invalue) return integer
This function converts a charstring representing an integer value to the equivalent integer.

Error causes are:
· invalue contains characters other than "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" and "-".
· invalue contains the character "-" at another position than the leftmost one.

NOTE:
On real test systems the integer interpretation of invalue may lead to an overflow problem that causes compile time or run-time error. However, this is out of the scope of the present document.

EXAMPLE:

str2int("66")
// will return the integer value 66

str2int("-66")
// will return the integer value -66

str2int("6-6")
// will cause an error

str2int("abc")
// will cause an error

str2int("0")
// will return the integer value 0
C.26
Character string to octetstring

str2oct (charstring invalue) return octetstring
This function converts a string of the type charstring to an octetstring. The string invalue shall contain even number characters and each shall be one of the "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e" "f", "A", "B", "C", "D", "E" or "F" graphical characters only. The resulting octetstring will have the same length as the incoming charstring.

Error causes are:

· invalue contains characters other than specified above.
· invalue contains odd number of characters.
EXAMPLE:

str2oct ("54696E6B792D57696E6B79") = '54696E6B792D57696E6B79'O
C.27
Character string to float

str2float (charstring invalue) return float
This function converts a charstring comprising a number into a float value. The format of the number in the charstring shall follow rules in clause 6.1.0, items a) or b) with the following exceptions:

· leading zeros are allowed;
· leading "+" sign before positive values is allowed;
· "-0.0" is allowed;
· no numbers after the dot in the decimal notation are allowed.

Error causes are:
· the format of invalue is different than defined above.

NOTE:
On real test systems the float interpretation of invalue may lead to an overflow problem that causes compile time or run-time error. However, this is out of the scope of the present document.

EXAMPLE:

str2float("12345.6") // is the same as str2float("123.456E+02")

str2float("1.6") // returns a float value equal to 1.6

str2float("+001.") // returns a float value equal to 1.0

str2float("+001") // returns a float value equal to 1.0

str2float("-0.0") // returns a float value equal to 0.0

C.28
Length of strings and lists

lengthof(template any_string_or_list_type inpar) return integer
This function returns the length of a value or template that is of type bitstring, hexstring, octetstring, charstring, universal charstring, record of, set of, or array (see the note below). The units of length for each string type are defined in table 4 in the main body of the present document. For record of, set of, and array the value to be returned is the sequential number of the last initialized element (index of that element plus 1).

The length of a fixed length record of, set of, or array value will always be the fixed length according to the type definition.

The length of an universal charstring shall be calculated by counting each combining character and hangul syllable character (including fillers) on its own (see ISO/IEC 10646 [9], clauses 23 and 24).
When the function lengthof is applied to string-type templates, inpar shall only contain the following matching mechanisms: specific value, value list, complemented value list, pattern, "?" (AnyValue instead of value), "*" (AnyValueOrNone instead of value), "?" (AnyElement inside value) and "*" (AnyElementsOrNone inside value) and the length restriction matching attribute. In case of string-type templates inpar shall match values of the same length only.

When the function lengthof is applied to templates of record of or set of types, inpar shall only contain the following matching mechanisms: specific value, value list, complemented value list, "?" (AnyValue instead of value), "*" (AnyValueOrNone instead of value), SuperSet, SubSet, "?" (AnyElement inside value) and "*" (AnyElementsOrNone inside value), permutattion and the length restriction matching attribute. The parameter inpar shall only match values, for which the lengthof function would give the same result.

NOTE 1:
In case of record ofs and set ofs and arrays only elements of the TTCN‑3 object, which is the parameter of the function are calculated; i.e. no elements of nested types are taken into account at determining the return value.

Error causes are:
· inpar is a string-type template and it can match string values with different length or the length restriction matching attribute contradicts the number of string elements in the template body.
· inpar is a record of or set of type template and it can match values of different lengths or the length restriction matching attribute contradicts the number of elements in the template body.
NOTE 2:
On real test systems the length calculation of inpar may lead to an overflow problem that causes compile time or run-time error. However, this is out of the scope of the present document.

The general error causes in clause 16.1.2 apply.
EXAMPLE 1:
Using lengthof for values

lengthof('010'B)
// returns 3

lengthof('F3'H)
// returns 2

lengthof('F2'O)
// returns 1

lengthof (universal charstring : "Length_of_Example") // returns 17

// Given

type record length(0..10) of integer MyList;

var MyList MyListVar := { 0, 1, -, 2, - };

lengthof(MyListVar);

// returns 4 without respect to the fact, that the element MyListVar[2] is not initialized
EXAMPLE 2:
Using lengthof for string-type templates

lengthof(charstring : "HELLO")

// returns 5

lengthof(octetstring : (’12’O, ’34’O))
// returns 1

lengthof(’1??1’B)

// returns 4

lengthof(universal charstring : ? length(8)) // returns 8

lengthof(’1*F’H)

// shall cause an error

lengthof(’1*F’H length (8))

// returns 8

lengthof(bitstring : ? length(2..infinity)) // shall cause an error

lengthof(’00*FF’O length(1..2))

// returns 2

lengthof(’1*49’H length(1..2))

// shall cause an error

lengthof(’1’B length(3))

// shall cause an error

lengthof(’1*1’B length(10..20))

// shall cause an error

EXAMPLE 3:

type record of integer RoI;

template RoI tr_roI1 := { 1, permutation(2, 3), ? }

template RoI tr_roI2 := {1, *, (2, 3) }

template RoI tr_roI3 := { 1, *, 10 } length(5)

template RoI tr_roI4 := { 1, 2, 3, * } length(1..2)

template RoI tr_roI5 := { 1, 2, 3, * } length(1..3)

lengthof (tr_roI1) // returns 4

lengthof (tr_roI2) // shall cause an error

lengthof (tr_roI3) // returns 5

lengthof (tr_roI4) // shall cause an error

lengthof (tr_roI5) // returns 3

C.29
Number of elements in a structured value

sizeof(template any_record_set_type inpar) return integer
This function returns the actual number of elements of a value or template of a record or set type (see note). In the case of record of and set of values, templates or arrays, the actual value to be returned is the sequential number of the last defined element (index of that element plus 1).

The function sizeof is applicable to templates of record and set types. The function is applicable only if the sizeof function gives the same result on all values that match the template.

NOTE:
Only elements of the TTCN‑3 object, which is the parameter of the function are calculated; i.e. no elements of nested types/values are taken into account at determining the return value.

Error causes are:
· when inpar is a template and it can match values of different sizes.

EXAMPLE:

// Given

type record MyPDU

{
boolean field1 optional,

integer field2

};

template MyPDU MyTemplate

{ field1 := omit,

 field2 :=
5

};

sizeof(MyTemplate);
// returns 1

type set S {

 integer f1,

 bitstring f2 optional,

 charstring f3 optional

}

template S tr_S1 := { f1 := (0..99), f2 := omit, f3 := ? }

template S tr_S2 := { f3 := *, f1 := 1, f2 := ’00’B if present }

template S tr_S3 := ({ f1 := 1, f2 := omit, f3 := "ABC" }, { f1 := 2, f3 := omit, f2 := ’1’B })

template S tr_S4 := ?

sizeof(tr_S1) // returns 2

sizeof(tr_S2) // shall cause an error

sizeof(tr_S3) // returns 2

sizeof(tr_S4) // shall cause an error

C.30
The IsPresent function

ispresent(template any_record_or_set_type_field inpar) return boolean
This function is allowed for record and set types only and returns the value true if and only if the value of the referenced field is present in the actual instance of the referenced data object. The argument to ispresent shall be a reference to a field of a record or set type.
The function ispresent is applicable to optional fields of a record or set templates. It returns true if inpar matches only value fields that are present. The returned value is false if the inpar matches only value fields that are omitted.

Error causes are:

· inpar is referring to a field that is not accessible, e.g. embedded in a template or in a field using omit, "?" (AnyValue) or "*" (AnyValueOrNone). Note, that this rule apply for any levels of embedding.

· when inpar is a template and it can match both present and omitted value fields.
EXAMPLE:

// Given

type record MyRecord

 {

 record {

 boolean innerField1 optional,

 integer innerField2 optional

 } field1 optional,

integer field2

}

var MyRecord vl_MyRecord := { field1 := {}, field2 := 5 }

ispresent(vl_MyRecord.field1) // returns true

vl_MyRecord.field1 := omit

ispresent(vl_MyRecord.field1) // returns false

ispresent(vl_MyRecord.field1.innerField1) // shall cause an error because field1 is omitted

var template MyRecord vlt_MyRecord := { field1 := ?, field2 := 5 }

ispresent(vlt_MyRecord.field1) // returns true

ispresent(vlt_MyRecord.field1.innerField1) // shall cause an error because field1 is AnyValue

// (pls. note, that at expansion of field1 the optional field innerField1 obtains "*"

// that can match both a present and an omitted field

type record R { integer f1 optional, integer f2 optional }

template R t1 := {f1 := 1, f2 :=(2 .. 4) }

template R t2 := { f1 := omit, f2 := (5, 7) if present }

template R t3 := {f1 := *, f2 :=? }

ispresent(t1.f1) // returns true

ispresent(t1.f2) // returns true

ispresent(t2.f1) // returns false

ispresent(t2.f2) // shall cause an error

ispresent(t3.f1) // shall cause an error

ispresent(t3.f2) // returns true

C.31
The IsChosen function

ischosen(template any_union_type inpar) return boolean
This function returns the value true if and only if the data object reference specifies the variant of the union type that is actually selected for a given data object.
The function ischosen is applicable to templates of union types containing a specific value or a value list. It returns true if all the values matched by inpar have the given field selected. The result is false if there is another field of the union type on which ischosen would return true.

Error causes are:
· inpar is referring to a field that is not accessible, e.g. embedded in a template or in a field using omit, "?" (AnyValue) or "*" (AnyValueOrNone). Note, that this rule apply for any levels of embedding.

· when inpar is a template and it can match values containing different selected fields
EXAMPLE 1:

type union U { integer f1, octetstring f2 }

template U t_U1 := {f1 := 1}

template U t_U2 := {f2 := ?}

template U t_U3 := ?

template U t_U4 := ({ f1 := 2 }, {f2 := ’AB’O })

template U t_U5 := ({ f2 := ’12?’O }, { f2 := ’*34’O length(2) })

ischosen(t_U1.f1) // returns true

ischosen(t_U1.f2) // returns false

ischosen(t_U2.f1) // returns false

ischosen(t_U2.f2) // returns true

ischosen(t_U3.f1) // shall cause an error

ischosen(t_U3.f2) // shall cause an error

ischosen(t_U4.f1) // shall cause an error

ischosen(t_U4.f2) // shall cause an error

ischosen(t_U5.f1) // returns false

ischosen(t_U5.f2) // returns true

EXAMPLE 2:

// Given

type union MyUnion

{
PDU_type1
p1,

PDU_type2
p2,

PDU_type
p3

}

// and given that MyPDU is a template of MyUnion type

// and received_PDU is also of MyUnion type

// then

MyPort.receive(MyPDU) -> value received_PDU

ischosen(received_PDU.p2)

// returns true if the actual instance of MyPDU carries a PDU of the type PDU_type2

C.32
The Regexp function

regexp (

 in template any_character_string_type inpar,

 in template any_character_string_type expression,
 integer groupno
) return
any_character_string_type
This function returns the substring of the input character string inpar, which is the content of n-th group matching to the expression. Theparameters inpar and expression shall be a value or a template of charstring or universal charstring types. In case inpar is a template, it shall contain the specific value matching mechanism only. The type of expression shall be universal charstring only when the type of inpar is universal charstring. When expression is a template it shall contain the specific value or pattern matching mechanisms only. The parameter groupno shall be a non-negative integer. The type of the character string returned is the root type of inpar.

First inpar (or in case inpar is a template, its value equivalent) shall be matched against expression. If expression is not a template containing a pattern matching mechanism, it shall be processed by this predefined function as if it was a character pattern as described in clause B.1.5. If this matching is unsuccessful, an empty string shall be returned. If this matching is successful, the substring of inpar shall be returned, which matched the groupno-s group of expression during the matching. Group numbers are assigned by the order of occurrences of the opening bracket of a group and counted starting from 0 by step 1.

Error causes are:

· when inpar is a template, it contains other matching mechanism than specific value or character pattern;
· when expression is a template, it contains other matching mechanism than specific value or character pattern;
· inpar is of charstring type and expression is of universal charstring type;
· groupno is a negative integer;
· there is no groupno -s group in expression.
EXAMPLE:

// Given

var charstring myInput := " simple text for a regexp example ";

var charstring myString;

myString := regexp(myInput,charstring:"?+(text)?+",0) //will return "text"

myString := regexp(myInput,charstring:"?+(text)?+",1) //causes an error as there is

 //no group with index 1

myString := regexp(myInput,charstring:"(?+)(text)(?+)",0) //will return " simple "

myString := regexp(myInput,charstring:"(?+)(text)(?+)",2) //will return

 //" for a regexp example "

myString := regexp(myInput,charstring:"((?+)(text)(?+))",0) //will return the whole inpar,

 //i.e. " simple text for a regexp example "

myString := regexp(myInput,charstring:"(([]+)(text)(?+))",0) //will return an empty string

 //as expression does not matches inpar

myString := regexp(myInput,universal charstring:"?+(text)?+",0) //will cause an error as

 // inpar is of type charstring, while

 // expression is of type universal charstring

myInput := " date: 2001-10-20 ; msgno: 17; exp "

var template charstring myPattern := pattern"([/t]#(,)date:[\d\-]#(,);[/t]#(,)msgno: (\d#(1,3)); (exp)#(0,1))"

//please note, that only the very first opening bracket and the bracket before "\d" denotes

// groups; "#(,)", "#(1,3)" and "#(0,1)" denotes matching the preceding expression several time

myString := regexp(myInput, myPattern,1) //will return the value "17".

//An example of a wrapper function to count groups from 1 and return the complete p_inpar

//if p_groupno equals 0

function regexp0(

 in template charstring p_inpar,

 in template charstring p_expression,

 in integer p_groupno)

return charstring {

var template charstring extended_expr := pattern "({p expression})";

return regexp(p inpar, extended_expr, p_groupno)

}

C.33
The Substring function

substr (template any_string_or_sequence _type inpar, in integer index, in integer count)

return
input_string_or_sequence_type
This function returns a substring or subsequence from a value that is of a binary string type (bitstring, hexstring, octetstring), a character string type (charstring, universal charstring), a sequence type (record of, set of) or array. The type of the substring or subsequence is the root type of the input value. The starting point of substring or subsequence to return is defined by the second in parameter (index). Indexing starts from zero. The third input parameter (count) defines the length of the substring or subsequence to be returned. The units of length for string types are as defined in table 4 of the present document.

When used on templates of character string types, only the inside matching mechanisms AnyElement and AnyElementsOrNone are allowed in inpar and the function shall return the character representation of the matching mechanisms, i.e. "?" for AnyElement and "*" for AnyElementsOrNone. When inpar is a template of binary string or sequence type or is an array, only the specificvalue and AnyElement matching mechanisms are allowed and the substring or subsequence to be returned shall not contain AnyElement.
Error causes are:
· index is less than zero;
· count is less than zero;
· index+count is greater than lengthof(inpar);
· inpar is a template of a character string type and contains a matching mechanism other than AnyElement or AnyElementsOrNone;
· inpar is a template of a binary string or sequence type or array and it contains other matching mechanism as specific value and AnyElement;
· inpar is a template of a binary string or sequence type or array and the substring or subsequence to be returned contains the AnyElement matching mechanism.
EXAMPLE:

substr ('00100110'B, 3, 4)

// returns '0011'B

substr ('ABCDEF'H, 2, 3)

// returns 'CDE'H

substr ('01AB23CD'O, 1, 2)

// returns 'AB23'O

substr ("My name is JJ", 11, 2)
// returns "JJ"

substr ({ 4, 5, 6 }, 1, 2)

// returns {5, 6}

C.34
The Replace function

replace (in any_string_or_sequence _type inpar, in integer index, in integer len,

 in any_string_or_sequence _type repl)

return any_string_or_sequence type
This function replaces the substring or subsequence of value inparat index index of length len with the string or sequence value repl and returns the resulting string or sequence. inparshall not be modified. If len is 0 the string or sequence repl is inserted. If index is 0, repl is inserted at the beginning of inpar. If index is lengthof(inpar), repl is inserted at the end of inpar. inparand repl, and the returned string or sequence shall be of the same root type. The function replace can be applied to bitstring, hexstring, octetstring, or any character string, record of, set of, or array. Note that indexing in strings starts from zero.

Error causes are:
· inparor repl are not of string, record of, set of, or array type;

· inparand repl are of different root type;

· index is less than 0 or greater than lengthof(inpar);

· len is less than 0 or greater than lengthof(inpar);

· index+len is greater than lengthof(inpar).

EXAMPLE:

replace ('00000110'B, 1, 3, '111'B)

// returns '01110110'B

replace ('ABCDEF'H, 0, 2, '123'H)

// returns '123CDEF'H

replace ('01AB23CD'O, 2, 1, 'FF96'O)
// returns '01ABFF96CD'O

replace ("My name is JJ", 11, 1, "xx")
// returns "My name is xxJ"

replace ("My name is JJ", 11, 0, "xx")
// returns "My name is xxJJ"

replace ("My name is JJ", 2, 2, "x")
// returns "Myxame is JJ",

replace ("My name is JJ", 12, 2, "xx")
// produces test case error

replace ("My name is JJ", 13, 2, "xx")
// produces test case error

replace ("My name is JJ", 13, 0, "xx")
// returns "My name is JJxx"
C.35
The random number generator function

rnd ([float seed]) return float

The rnd function returns a (pseudo) random number less than 1 but greater or equal to 0. The random number generator is initialized by means of an optional seed value. Afterwards, if no new seed is provided, the last generated number will be used as seed for the next random number. Without a previous initialization a value calculated from the system time will be used as seed value when rnd is used the first time.

NOTE:
Each time the rnd function is initialized with the same seed value, it shall repeat the same sequence of random numbers.

To produce a random integers in a given range, the following formula can be used:

float2int(int2float(upperbound - lowerbound +1)*rnd()) + lowerbound

// Here, upperbound and lowerbound denote highest and lowest number in range.

The general error causes in clause 16.1.2 apply.
C.36
Enumerated to integer

enum2int (Enumerated_type inpar) return integer

This function accepts an enumeration value and returns the integer value associated to the enumeration (see also clause 6.2.4).

The general error causes in clause 16.1.2 apply.
EXAMPLE:

type enumerated MyFirstEnumType {

Monday, Tuesday, Wednesday, Thursday, Friday

};

type enumerated MySecondEnumType {

Saturday(-3), Sunday (0), Monday

};

//within a dynamic language element:

var MyFirstEnumType vl_FirstEnum := Monday;

var MySecondEnumType vl_SecondEnum := Monday;

enum2int(vl_FirstEnum) // returns 0

enum2int(vl_SecondEnum) // returns 1

vl_FirstEnum := Wednesday;

vl_SecondEnum := Saturday;

enum2int(vl_FirstEnum) // returns 2

enum2int(vl_SecondEnum) // returns -3

vl_FirstEnum := Friday;

vl_SecondEnum := Sunday;

enum2int(vl_FirstEnum) // returns 4

enum2int(vl_SecondEnum) // returns 0

C.37
The IsValue function

isvalue(in template any_type inpar) return boolean;

The function shall accept templates of any known type. The function shall return true, if inpar is completely initialized and resolves to a specific value. If inpar is of a structured type or array, omit is considered to be a concrete value for optional fields, i.e. the function shall also return true if optional fields of inpar are set to omit. The function shall return false otherwise.

If the isvalue function is used with a non-selected choice of a union type value or template, this shall cause an error.

NOTE:
The null value assigned to default and component references shall be considered as concrete values.

Error causes are:

· inpar is referring to a field that is not accessible, e.g. embedded in a template or in a template field using omit or "*" (AnyValueOrNone). Note that this rule applies for any levels of embedding.

EXAMPLE 1:
Simple types

template charstring ts_char0 := "ABCD"; //template containing a specific value matching

template charstring tr_char1 := "AB?D"; //template containing a specific value matching

 //note, that "?" is not a matching symbol in this case

template charstring tr_char2 := pattern "ABCD"; //a pattern matching a single value only

template charstring tr_char3 := pattern "AB?D"; //pattern matching

template charstring tr_char4 := ("ABCD"); // template containing a specific value (expression)

template charstring tr_char5 := ("ABCD","EFGH"); //a value list matching a single value only

isvalue(ts_char0); // shall return true

isvalue(tr_char1); // shall return true

isvalue(tr_char2); // shall return false

isvalue(tr_char3); // shall return false

isvalue(tr_char4); // shall return true similarly to e.g. isvalue((2)) shall return true

isvalue(tr_char5); // shall return false

EXAMPLE 2:
Special types

var default vl_default := null;

isvalue(vl_default); // shall return true

EXAMPLE 3:
Record/set types

type record MyRec {

integer f1 optional,

integer f2 optional

}

var MyRec vl_MyRec;

var template MyRec vlt_MyRec;

isvalue(vl_MyRec); // shall return false

isvalue(vlt_MyRec); // shall return false

vl_MyRec := { f1 := 5, f2 := omit }

vlt_MyRec := { f1 := ?, f2 := 5 }

isvalue(vl_MyRec); // shall return true

isvalue(vl_MyRec.f2); // shall return false;

isvalue(vlt_MyRec); // shall return false

isvalue(vlt_MyRec.f1); // shall return false

isvalue(vlt_MyRec.f2); // shall return true

vlt_MyRec.f2 := omit;

isvalue(vlt_MyRec.f2); // shall return false

EXAMPLE 4:
Union types

type union MyUnion {

integer ch1,

integer ch2

}

template MyUnion ts_MyUnion := { ch1 := 5 }

template MyUnion tr_MyUnion := { ch1 := ? }

var MyUnion vl_ MyUnion;

isvalue(ts_MyUnion); // shall return true

isvalue(tr_MyUnion); // shall return false

isvalue(tr_MyUnion.ch1); // shall return false;

// note, this is different from ischosen(tr_MyUnion.ch1) as isvalue checks the content of the

// choice ch1, while ischosen is checking if ch1 has been selected or not

isvalue(tr_MyUnion.ch2); // shall cause an error;

C.38
The encoding function

encode (in template any_type inpar
) return bitstring
The encode function encodes a value or template into a bitstring. When the actual parameter that is passed to inpar is a template, it shall resolve to a specific value (the same restrictions apply as for the argument of the send statement).

 The returned bitstring represents the encoded value of inpar, however, the TTCN-3 test system need not make any check on its correctness.

The
<general error causes in clause C.0>or <the restrictions in clause> 16.1.2 apply.
Error causes are:

· Encoding fails due to a runtime system problem (i.e. no encoding function exists for the actual type of inpar).

C.39
The decoding function

decode (inout bitstring encoded_value, out
 any_type decoded_value) return integer
The decode function decodes a bitstring into a value. The test system shall suppose that the bitstring encoded_value represent an encoded instance of the actual type of decoded_value.
If the decoding was successful, then the used bits are removed from the parameter encoded_value and the rest is returned (in encoded_value) and the decoded value is returned in the parameter decoded_value. If the decoding was unsuccessful, the parameters encoded_value and decoded_value are not changed. The function shall return an integer value to indicate success or failure of the decoding below:
The return value 0 indicates that decoding was successful

The return value 1 indicates an unspecified cause of decoding failure.
The return value 2 indicates that decoding could not be completed as encoded_value did not contain enough bits.

The <general error causes in clause C.0>or <the restrictions in clause> in clause 16.1.2 apply.

�Check function name. Should it be a keyword or should that be avoided.

Alternative proposals: encoding/decoding. tciEncode, tciDecode

�"encode" and "decode" may be used already in test suites as name of user functions. Further ideas: encMessage, decMessage; encmessage, decmessage; encpdu, decpdu (short but may be misleading as also ASPs may be encoded)…

�I propose to allow templates not only value here; just to avoid valueofs

�parameter changed to in template

�Added

�Is that more clear now?

�We should not refer to TCI in the core; this is the "opposite direction" and most user would not understand this sentence.

�This is a general problem in this clause; there are no error causes in 16.1.2

�inout changed to out: i.e. if decoding fails, the content of plain_value would be undefined.

�It is not possible to refer to the receive operation, as in a runtime system the decoding and the actual receive operation could be decoupled. Therefore no explanation as for the encode function.

�Two specific reasons are provided. I find these two the easiest one.

�Me too. TCI-CD decode function can currently return error cause 1 only. The case, when the type hyphotesys is correct but bits are unsufficient (decoding can progress until the in-bitstring allows but there are still fields remaining in the type) is not covered by TCI. Possibly another decode function should be added to TCI

�In this case the cause value 1 shall be returned

ETSI

