Error! No text of specified style in document.
1
Error! No text of specified style in document.

23
Timer operations

TTCN‑3 supports a number of timer operations as given in table 22. These operations may be used in test cases, functions, altsteps and module control.

Table 22: Overview of TTCN‑3 timer operations

	Timer operations

	Statement
	Associated keyword or symbol

	Start timer
	start

	Stop timer
	stop

	Read elapsed time
	read

	Check if timer running
	running

	Timeout event
	timeout

23.1
The timer mechanism

It is assumed that each test component and the module control, maintain their own running-timers list and timeout-list, i.e. a list of all timers that are actually running and a list of all timers that have timed out. The timeout-lists are part of the snapshots that are taken when a test case is executed. The running-timers list and timeout-list of a component or module control are updated if a timer of the component or module control is started, is stopped, times out or the component or module control executes a timeout operation.

NOTE 1:
The running-timers list and the timeout-list are only a conceptual lists and do not restrict the implementation of timers. Other data structures like a set, where the access to timeout events is not restricted by, e.g. the order in which the timeout events have happened, may also be used.

NOTE 2:
Conceptually, each test component and module control only maintain one running-timers list and one timeout-list. However, within a given scope unit only timers known in the scope unit can be accessed individually, i.e. timers that are declared in the scope unit, passed in as parameters to the scope unit or known via a runs-on clause. In some special cases (e.g. for re-establishing a test component during a test run), it can be necessary to stop timers local to other scope units or to check if timers local to other scope units are running or have already timed out. This can be done by using the keywords all and any in combination with the timer operations stop, timeout and running. Allowed combinations are defined in clause 23.7.

When a timer expires, the timer becomes immediately inactive. A timeout event is placed in the timeout-list and removed from the running-timer list of the test component or module control for which the timer has been declared. Only one entry for any particular timer may appear in the timeout-list and running-timer list of the test component or module control for which the timer has been declared.

All running timers shall automatically be cancelled when a test component is explicitly or implicitly stopped.
23.2
The Start timer operation

The start timer operation is used to indicate that a timer should start running.
Syntactical Structure
((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "]" })

"." start ["(" TimerValue ")"]
Semantic Description
When a timer is started, its name is added to the list of running timers (for the given scope unit).
The optional timer value parameter shall be used if no default duration is given, or if it is desired to override the default value specified in the timer declaration. When a timer duration is overridden, the new value applies only to the current instance of the timer, any later start operations for this timer, which do not specify a duration, shall use the default duration.

Starting a timer with the timer value 0.0 means that the timer times out immediately. Starting a timer with a negative timer value, e.g. the timer value is the result of an expression, or without a specified timer value shall cause a runtime error.

The timer clock runs from the float value zero (0.0) up to maximum stated by the duration parameter.

The start operation may be applied to a running timer, in which case the timer is stopped and re-started. Any entry in a timeout-list for this timer shall be removed from the timeout-list.

Restrictions
a) Timer value shall be a non‑negative float number (i.e. greater or equal 0.0).
Examples

MyTimer1.start;

// MyTimer1 is started with the default duration

MyTimer2.start(20E-3);
// MyTimer2 is started with a duration of 20 ms

// Elements of timer arrays may also be started in a loop, for example

timer t_Mytimer [5];

var float v_timerValues [5];

for (var integer i := 0; i<=4; i:=i+1)

 { v_timerValues [i] := 1.0 }

for (var integer i := 0; i<=4; i:=i+1)

 {t_Mytimer [i].start (v_timerValues [i])}

23.3
The Stop timer operation

The stop operation is used to stop a running timer.
Syntactical Structure
(((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "]" }) |

 all timer)

"." stop
Semantic Description
A stop operation removes a running timer from the list of running timers. A stopped timer becomes inactive and its elapsed time is set to the float value zero (0.0).
Stopping an inactive timer is a valid operation, although it does not have any effect. Stopping an expired timer causes the entry for this timer in the timeout-list to be removed.
The all keyword may be used to stop all timers that have been started on a component or module control.

Restrictions
No specific restrictions in addition to the general static rules of TTCN‑3 given in clause 5.

Examples

MyTimer1.stop;

// stops MyTimer1

all timer.stop;

// stops all running timers

23.4
The Read timer operation

The read operation is used to retrieve the time that has elapsed since the specified timer was started.
Syntactical Structure
((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "]" })

"." read
Semantic Description
The read operation returns the time that has elapsed since the specified timer was started. The returned value shall be of type float.

Applying the read operation on an inactive timer, i.e. on a timer not listed on the running-timer list, will return the float value zero (0.0).

Restrictions
No specific restrictions in addition to the general static rules of TTCN‑3 given in clause 5.

Examples

var float Myvar;

MyVar := MyTimer1.read; // assign to MyVar the time that has elapsed since MyTimer1 was started

23.5
The Running timer operation

The running timer operation is used to check whether a timer is in the running-timer list.
Syntactical Structure
(((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "]" }) |

 any timer)

"." running
Semantic Description
The running timer operation is used to check whether a specific timer visible in the given scope unit is listed on the running-timer list or not (i.e. that it has been started and has neither timed out nor been stopped). The operation returns the value true if the timer is listed on the list, false otherwise.

The any keyword may be used to check if any timer started on a component or module control is running.

Restrictions
No specific restrictions in addition to the general static rules of TTCN‑3 given in clause 5.

Examples
EXAMPLE 1:
Checking if a specific timer is running.

if (MyTimer1.running) { … }
EXAMPLE 2:
Checking if an arbitrary timer is running.

if (any timer.running) { … }
23.6
The Timeout operation

The timeout operation allows to check the expiration of timers.
Syntactical Structure
(((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "]" }) |

 any timer)

"." timeout
Semantic Description
The timeout operation allows to check the expiration of a specific timer in the scope unit of a test component or module control in which the timeout operation has been called or of any timer that has been started on a test component or module control before entering the scope in which the timeout operation has been called.
When a timeout operation is processed, if a timer name is indicated, the timeout-list is searched according to the TTCN‑3 scope rules. If there is a timeout event matching the timer name, that event is removed from the timeout-list, and the timeout operation succeeds.

The timeout can be used to determine an alternative in an alt statement or as stand-alone statement in a behaviour description. In the latter case a timeout operation is considered to be shorthand for an alt statement with only one alternative, i.e. it has blocking semantics, and therefore provides the ability of passive waiting for the timeout of timer(s).

The any keyword used with the timeout operation succeeds if the timeout-list is not empty.

Restrictions
b) The timeout shall not be used in a boolean expression.
Examples
EXAMPLE 1:
Timeout of a specific timer.

MyTimer1.timeout;
// checks for the timeout of the previously started timer MyTimer1

EXAMPLE 2:
Timeout of an arbitrary timer.

any timer.timeout; // checks for the timeout of any previously started timer

23.7
Summary of use of any and all with timers

The keywords any and all may be used with timer operations as indicated in table 23.

Table 23: Any and All with Timers

	Operation
	Allowed
	Example

	
	any
	all
	

	start
	
	
	

	stop
	
	yes
	all timer.stop

	read
	
	
	

	running
	yes
	
	if (any timer.running) {…}

	timeout
	yes
	
	any timer.timeout

ETSI

